The long-term course of the annual total sunshine duration in Europe and changes in the phases of the thermohaline circulation in the North Atlantic (1901–2018).
PDF

Keywords

sunshine duration
North Atlantic thermohaline circulation
mid-tropospheric circulation
brightening
dimming
Europe

How to Cite

Marsz, A. A., Styszyńska, A., & Matuszko, D. (2023). The long-term course of the annual total sunshine duration in Europe and changes in the phases of the thermohaline circulation in the North Atlantic (1901–2018). Quaestiones Geographicae, 42(3), 49–56. https://doi.org/10.14746/quageo-2023-0023

Abstract

The current study was based on sunshine duration data from 13 European stations during 1901–2018. It was found that the variability in the annual total sunshine duration (SD) over Europe is related to the variability in the component of the surface thermohaline circulation in the North Atlantic (NA THC). Positive NA THC phases (the condition of the ‘warm’ North Atlantic) correspond to the periods of increased SD (brightening), while negative phases correspond to the periods of decreased SD (dimming). These relationships remain stable and statistically significant. The mechanism of these relationships is based on the influence of weakened or enhanced heat flow from the ocean to the atmosphere on the course of the mid-tropospheric circulation processes. In periods of positive thermohaline circulation in the North Atlantic (NA THC) phases, the share of long waves (macrotype W according to the Wangengejm–Girs classification) increases, with the occurrence of which the frequency of anticyclonic weather over Europe in creases, whereas in the periods of negative NA THC phases, the share of shorter waves (macrotypes E and C) increases, with the occurrence of which the frequency of cyclonic (frontal) weather over Europe increases. It is characterised by increased layer cloud cover, limiting the SD. Thus, along with changes in the thermal condition of the North Atlantic, the structure of cloud cover over Europe changes and becomes a factor regulating long-term changes in the annual total SD.

https://doi.org/10.14746/quageo-2023-0023
PDF

Funding

Translation/proofreading of this publication has been supported by a grant from the Faculty of Geography and Geology under the Strategic Programme Excellence Initiative at Jagiellonian University.

References

Alexander M.A., Kilbourne H., Nye J.A., 2014. Climate variability during warm and cold phases of the Atlantic multidecadal oscillation (AMO) 1871-2008. Journal of Marine Systems 133: 14-26. DOI: https://doi.org/10.1016/j.jmarsys.2013.07.017

Bartoszek K., Matuszko D., Węglarczyk S., 2021. Trends in sunshine duration in Poland (1971-2018). International Journal of Climatology 41(1): 73-91. DOI: https://doi.org/10.1002/joc.6609

Birkel S.D., Mayewski P.A., Maasch K.A., Kurbatov A.V., Lyon B., 2018. Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. npj Climate and Atmospheric Science 1, 24. DOI: https://doi.org/10.1038/s41612-018-0036-6

Booth B.B.B., Dunstone N.J., Halloran P.R., Andrews T., Bellouin N., 2012. Aerosols implicated as a prime driver if twentiech-century North Atlantic climate variability. Nature 484: 228-232. DOI: https://doi.org/10.1038/nature10946

Brázdil R., Flocas A., Sahsamanoglou H., 1994. Fluctuation of sunshine duration in central and South-Eastern Europe. International Journal of Climatology 14(9): 1017-1034. DOI: https://doi.org/10.1002/joc.3370140907

Bryś K., 2013. Dynamika bilansu radiacyjnego murawy oraz powierzchni nieporośniętej. Monografie CLXII, Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław.

Buckley M.W., Marshall J., 2015. Observations, inferences, and mechanism of the Atlantic meridional overturning circulation: A review. Reviews of Geophysics 54(1): 5-63. DOI: https://doi.org/10.1002/2015RG000493

Chylek P., Klett J.D., Dubley M.K., Hengartner N., 2016. The role of Atlantic multidecadal oscillation in the global mean temperature variability. Climate Dynamics 47: 3271-3279. DOI: https://doi.org/10.1007/s00382-016-3025-7

Chylek P., Klett J.D., Lesins G., Dubley M.K., Hengartner N., 2014. The Atlantic multidecadal oscillation is a dominant factor of oceanic influence on climate. Geophysical Research Letters 41(5): 1689-1697. DOI: https://doi.org/10.1002/2014GL059274

Delworth T.L., Greatbatch R.J., 2000. Multidecadal thermohaline circulation variability driven by atmosphere surface flux forcing. Journal of Climate 13(9): 1481-1495. DOI: https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2

Dima M., Lohmann G., 2007. A hemispheric mechanism for the Atlantic multidecadal oscillation. Journal of Climate 20(11): 2706-2719. DOI: https://doi.org/10.1175/JCLI4174.1

Dong B., Sutton R., 2003. Variability of Atlantic Ocean heat transport and its effects on the atmosphere. Annals of Geophysics 46(1): 87-97.

Dong B., Sutton R.T., 2005. Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. Journal of Climate 18(8): 1117-1135. DOI: https://doi.org/10.1175/JCLI3328.1

Dübal H.R., Vahrenholt F., 2021. Radiative energy flux variation from 2001-2020. Atmosphere 12: 1297. DOI: https://doi.org/10.3390/atmos12101297

Enfield D.B., Mestas-Nunez A.M., Trimble P.J., 2001. The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US. Geophysical Research Letters 28(10): 2077-2080. DOI: https://doi.org/10.1029/2000GL012745

Fortak H., 1971. Meteorologie Deutsche Buch-Gemainschaft Berlin, Darmstadt, Wien.

Girs A.A., 1964. O sozdanii edinoi klassifikacii makrosinopticheskikh processov severnogo polushariya. Meteorologya i Gidrologiya 4: 43-47.

Girs A.A., Kondratovich K.V., 1978. Metody dolgosrochnykh prognozov pogody. Girometeoizdat, Leningrad.

Grossmann I., Klotzbach P.J., 2009. A review of North Atlantic modes of natural variability and their driving mechanism. Journal of Geophysical Research 114(D24): 107. DOI: https://doi.org/10.1029/2009JD012728

Hartmann D.L., 2016. Global physical climatology, Second Edition. Elsevier. Amsterdam, Netherlands.

Hill T., Lewicki P., 2007. STATISTICS: Methods and Applications. StatSoft, Tulsa, OK. Online:http://www.statsoft.com/textbook/stathome.html (accessed on October 30, 2022)

Jackson I.C., Kahana R., Graham T., Ringer M.A., Woollings T., Mecking J.V., Wood R.A., 2015. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics 45: 3299-3316. DOI: https://doi.org/10.1007/s00382-015-2540-2

Kalnay E., Kanamsitu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., Withe G., Woolen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Jankowiak J., Mo C.K., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., 1996. The NCEP/NCAR 40-Year reanalysis project. Biulletin of the American Meteorological Society 77(3): 437-471. DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kerr R.A., 2000. A North Atlantic climate pacemaker for the centuries. Science 288(5473): 1984-1985. DOI: https://doi.org/10.1126/science.288.5473.1984

Knight J.R., Allan R.J., Folland C.K., Vellinga M., Mann M.E., 2005. A signature of peristent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters 32(20): L20708. DOI: https://doi.org/10.1029/2005GL024233

Knight R.J., 2009. The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. Journal of Climate 22(7): 1610-1625. DOI: https://doi.org/10.1175/2008JCLI2628.1

Kushnir Y., 1994. Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. Journal of Climate 7(1): 141-157. DOI: https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2

Liepert B.G., 2002. Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophysical Research Letters 29(10): 1421. DOI: https://doi.org/10.1029/2002GL014910

Lyu K., Yu J.Y., 2017. Climate impacts of the Atlantic multidecadal oscillation simulated in the CIMP5 models: A re-evaluation based on a revised index. Geophysical Research Letters 44(8): 3867-3876 DOI: https://doi.org/10.1002/2017GL072681

Manara V., Beltrano M.C., Brunetti M., Maugeri M., Sanchez-Lorenzo A., Simolo C., Sorrenti S., 2015. Sunshine duration variability and trends in Italy from homogenized instrumental time series (1936-2013). Journal of Geophysical Research 120(9): 3622-3641. DOI: https://doi.org/10.1002/2014JD022560

Mann M.E., Emanuel K.A., 2006. Atlantic hurricane trends linked to climate change. Eos. Transactions, American Geophysical Union 87(24): 233-244. DOI: https://doi.org/10.1029/2006EO240001

Mann M.E., Steinman B.A., Brouillette D.J., Miller S.K., 2021. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 371(6533): 1014-1019. DOI: https://doi.org/10.1126/science.abc5810

Mann M.E., Steinman B.A., Miller S.K., 2020. Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nature Communications 11: 49. DOI: https://doi.org/10.1038/s41467-019-13823-w

Marsz A.A., 2015. Model zmian powierzchni lodów morskich Arktyki (1979-2013) – zmienne sterujące w modelu minimalistycznym” i ich wymowa klimatyczna. Problemy Klimatologii Polarnej 25: 249-334.

Marsz A.A., Matuszko D., Styszyńska A., 2022. The thermal state of the North Atlantic and macro-circulation conditions in the Atlantic-European sector, and changes in sunshine duration in Central Europe. International Journal of Climatology 42(2): 748-761. DOI: https://doi.org/10.1002/joc.7270

Marsz A.A., Styszyńska A., Bryś K., Bryś T., 2021. Role of internal variability of climate system in increase of air temperature in Wrocław (Poland) in the years 1951-2018. Quaestiones Geographicae 40(3): 109-124. DOI: https://doi.org/10.2478/quageo-2021-0027

Matuszko D., Bartoszek K., Soroka J., 2022. Long-term variability of cloud cover in Poland (1971-2020). Atmospheric Research 283: 106028. DOI: https://doi.org/10.1016/j.atmosres.2022.106028

Matuszko D., Węglarczyk S., 2018. Long-term variability of the cloud amount and cloud genera and their relationship with circulation (Kraków, Poland). International Journal of Climatology 38(51): 1205-1220. DOI: https://doi.org/10.1002/joc.5445

Norris J.R., Wild M., 2007. Trends in aerosol radiative effects over Europe inferred from observed cloud cover solar ‘dimming’ and solar ‘brightening’. Journal of Geophysical Research, Atmospheres 112: D82014. DOI: https://doi.org/10.1029/2006JD007794

Qin M., Dai A., Hua W., 2020. Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920. Science Advances 6(29): eabb0425. DOI: https://doi.org/10.1126/sciadv.abb0425

Ruckstuhl C H., Norris J.R., 2009. How do aerosol histories affect solar “dimming” and “brightening” over Europe? IPCC-AR4 models versus observations. Journal of Geophysical Research, Atmosphere 114: D00D04. DOI: https://doi.org/10.1029/2008JD011066

Sanchez-Lorenzo A., Calbó J., Brunetti M., Deser C., 2009. Dimming/brightening over the Iberian Peninsula: Trends in sunshine duration and cloud cover and their relations with atmospheric circulation. Journal of Geophysical Research, Atmosphere 114(D10): D00D09. DOI: https://doi.org/10.1029/2008JD011394

Sanchez-Lorenzo A., Calbó J., Martin-Vide J., 2008. Spatial and temporal trends in sunshine duration over Western Europe (1938-2004). Journal of Climate 21(22): 6089-6098. DOI: https://doi.org/10.1175/2008JCLI2442.1

Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W., 2010. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. Journal of Climate 23(21): 5668-5677. DOI: https://doi.org/10.1175/2010JCLI3347.1

Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J., 2008. Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880-2006). Journal of Climate 21(10): 2283-2296. DOI: https://doi.org/10.1175/2007JCLI2100.1

Stanhill G., Achiman O., Rosa R., Cohen S., 2014. The cause of solar dimming and brightening at the Earth’s surface during the last half century: Evidence from measurements of sunshine duration. Geophysical Research Letters 119(18): 10902-10911. DOI: https://doi.org/10.1002/2013JD021308

Stjern C.W., Kristjansson J.E., Hansen A.W., 2009. Global dimming and global brightening – an analysis of surface radiation and cloud cover data in northern Europe. International Journal of Climatology 29(5): 643-653. DOI: https://doi.org/10.1002/joc.1735

Sutton R., Dong B., 2012. Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geoscience 5: 788-792. DOI: https://doi.org/10.1038/ngeo1595

Sutton R.T., Hodson D.L.R., 2005. Atlantic Ocean forcing of North American and European summer climate. Science 309(5731): 115-118. DOI: https://doi.org/10.1126/science.1109496

Sutton R.T., Hodson D.L.R., 2007. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. Journal of Climate 20(5): 891-907. DOI: https://doi.org/10.1175/JCLI4038.1

Trenberth K.E., Shea D.J., 2006. Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters 33: L12704. DOI: https://doi.org/10.1029/2006GL026894

Urban G., Migała K., Pawliczek P., 2018. Sunshine duration and its variability in the main ridge of the Karkonosze Mountains in relation to with atmospheric circulation. Theoretical and Applied Climatology 131: 1173-1189. DOI: https://doi.org/10.1007/s00704-017-2035-7

Veretenenko S., Ogurtsov M., 2016. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. Journal of Atmospheric and Solar-Terrestrial Physics 149: 207-218. DOI: https://doi.org/10.1016/j.jastp.2016.04.003

Vetter T., Wechsung T., 2015. Direct aerosol effects during periods of solar dimming and brightening hidden in the regression residuals: Evidence from Potsdam measurements. Journal of Geophysical Research Atmospheres 120(21): 11299-11305. DOI: https://doi.org/10.1002/2015JD023669

Wangengejm G.Ya., 1952. Osnovy makrocirkuylacionngo metoda dolgosrochnykh meteorologicheskikh prognozov dlya Arktiki. Trudy AANII 34: 1-314. DOI: https://doi.org/10.2307/1926859

Wibig J., 2008. Variability and trends in cloud characteristics in Lodz in the second half of the 20th century. International Journal of Climatology 28(4): 479-491. DOI: https://doi.org/10.1002/joc.1544

Wrzesiński D., Marsz A.A., Styszyńska A., Sobkowiak L., 2019. Effect of the North Atlantic thermohaline circulation on changes in climatic conditions and river flow in Poland. Water 11(8): 1622. DOI: https://doi.org/10.3390/w11081622

Wyatt M.G., Kravtsov S., Tsonis A.A., 2012. Atlantic mutlidecadal oscillation and Northern Hemisphere’s cilmate variability. Climate Dynamics 38(5): 929-949. DOI: https://doi.org/10.1007/s00382-011-1071-8

Zhang R., 2007. Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophysical Research Letters 34(12): L12713. DOI: https://doi.org/10.1029/2007GL030225

Zhang R., Delworth,T., Sutton R., Hodson D.L.R., Dixon K.W., Held I.M., Kushnir Y., Marshall J.C., Ming Y., Msadek R., Robson J., Rosati A., Ting M.F., Vecchi G.A., 2013. Have aerosols caused the observed Atlantic multidecadal variability? Journal of the Atmospheric Sciences 70(4): 1135-1144. DOI: https://doi.org/10.1175/JAS-D-12-0331.1

Zhang R., Sutton R., Danabasoglu G., Kwon Y.O., Marsh R., Yager S.G., Amrhein D.E., Little C.M., 2019. A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Reviews of Geophysics 57(2): 316-375. DOI: https://doi.org/10.1029/2019RG000644

Żmudzka E., 2007. Variability of cloudiness over Poland and its circulation-related conditioning (1951-2000). Wydawnictwa Uniwersytetu Warszawskiego, Warszawa.