Long-term variability and trends in the characteristics of heating seasons in central Europe
Journal cover Quaestiones Geographicae, volume 44, no. 1, year 2025, title Quaestiones Geographicae
PDF

Keywords

heating seasons
heating degree-days
start and end of heating seasons
duration of heating seasons
trends
climate change
Central Europe

How to Cite

Szyga-Pluta, K., & Piotrowicz, K. (2025). Long-term variability and trends in the characteristics of heating seasons in central Europe. Quaestiones Geographicae, 44(1), 71–84. https://doi.org/10.14746/quageo-2025-0005

Abstract

The study analysed the temporal and spatial variability of the changes in the start and end dates and the length of heating seasons (HS), as well as the values of heating degree-days (HDD) in Central Europe from 1961/62 to 2020/21. For this purpose, the average daily air temperature values from 12 meteorological stations located in cities with a population ranging from 180 to 17,500 were used. It was found that the start of the seasons was later at most of the studied stations, and the end of the season was hastened across the area, which contributes to the shortening of the HS by an average of 1.46 days per decade and a decrease in HDD by 96.3°C per decade. In warmer regions of Central Europe, with a higher annual average air temperature, the season starts about 4 days earlier, is longer by about 7 days, and is characterised by a decrease of about 300°C in HDD value for every 1°C increase in average annual temperature. However, based on data from selected cities, the number of their inhabitants was not found to have a statistically significant impact on the individual parameters of the studied season.

https://doi.org/10.14746/quageo-2025-0005
PDF

References

Al-Hadhrami L.M., 2013. Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renewable and Sustainable Energy Reviews 27: 305-314. DOI: https://doi.org/10.1016/j.rser.2013.04.034

Andargie M.S., Touchie M., O’Brien W., 2019. A review of factors affecting occupant comfort in multi-unit residential buildings. Building and Environment 160: 106182. DOI: https://doi.org/10.1016/j.buildenv.2019.106182

Andrade C., Mourato S., Ramos J., 2021. Heating and cooling degree-days climate change projections for Portugal. Atmosphere 12(6): 715. DOI: https://doi.org/10.3390/atmos12060715

Atalla T., Gualdi S., Lanza A., 2018. A global degree days database for energy-related applications. Energy 143: 1048-1055. DOI: https://doi.org/10.1016/j.energy.2017.10.134

Badescu V., Zamfir E., 1999. Degree-days, degree-hours and ambient temperature bin data from monthly average temperatures (in Romania). Energy Conversion and Management 40: 885-900. DOI: https://doi.org/10.1016/S0196-8904(98)00148-4

Belova I.N., Ginzburg A.S., Krivenok L.A., 2018. Heating seasons length and degree days trends in Russian cities during last half century. Energy Procedia 149: 373-379. DOI: https://doi.org/10.1016/j.egypro.2018.08.201

Bilgili M., Canpolat C., Pinar E., Sahin B., 2023. Analysis of heating degree-days (HDD) data using machine learning and conventional time series methods. Theoretical and Applied Climatology 154(1): 141-160. DOI: https://doi.org/10.1007/s00704-023-04543-9

Buyukalaca O., Bulut H., Yilmaz T., 2001. Analysis of variable-base heating and cooling degree-days for Turkey. Applied Energy 69: 269-283. DOI: https://doi.org/10.1016/S0306-2619(01)00017-4

Caia J., Jiang Z., 2008. Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China. Renewable and Sustainable Energy Reviews 12: 1667-1680. DOI: https://doi.org/10.1016/j.rser.2007.03.002

De Rosa M., Bianco V., Scarpa F., Tagliafico L.A., 2015. Historical trends and current state of heating and cooling degree days in Italy. Energy Conversion and Management 90: 323-335. DOI: https://doi.org/10.1016/j.enconman.2014.11.022

Deroubaix A., Labuhn I., Camredon M., Gaubert B., Monerie P.A., Popp M., Ramarohetra J., Ruprich-Robert J., Silvers L.G., Siour G., 2021. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nature Communications 12(1): 5197. DOI: https://doi.org/10.1038/s41467-021-25504-8

EC [European Commission], 2023. Population structure in European Union. Online: ec.europa.eu/eurostat/ (accessed 13 December 2023).

ECA&D Database, 2023. Online: www.ecad.eu (accessed 1 September 2023).

Environment Canada., 1988. Handbook on climate data sources of the atmospheric environment service. Canadian Climate Centre, Ottawa, Canada.

Ewing R., Rong F., 2008. The impact of urban form on US residential energy use. Housing Policy Debate 19(1): 45-52. DOI: https://doi.org/10.1080/10511482.2008.9521626

Harvey L.D., 2020. Using modified multiple heating-degree-day (HDD) and cooling-degree-day (CDD) indices to estimate building heating and cooling loads. Energy and Buildings 229: 110475. DOI: https://doi.org/10.1016/j.enbuild.2020.110475

Hauke J., Kossowski T., 2011. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaestiones Geographicae 30(2): 87-93. DOI: https://doi.org/10.2478/v10117-011-0021-1

IMGW-PIB, 2023. [Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy], Baza danych. Online: danepubliczne.imgw.pl/datastore (accessed 1 September 2023).

Indraganti M., Boussaa D., 2017. A method to estimate the heating and cooling degree-days for different climatic zones of Saudi Arabia. Building Services Engineering Research and Technology 38(3): 327-350. DOI: https://doi.org/10.1177/0143624416681383

IPCC., 2022. Summary for policymakers. In: Pörtner H.-O., Roberts D.C., Poloczanska E.S., Mintenbeck K., Tignor M., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA: 3-33.

Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., van Engelen A.F.V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., López J.A., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L.V., Petrovic P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22(12): 1441-1453. DOI: https://doi.org/10.1002/joc.773

Kodah Z.H., El-Shaarawi M.A.I., 1990. Weather data in Jordan for conventional and solar HVAC systems. ASHRAE Transactions 96(1): 124-131.

Kohler M., Blond N., Clappier A., 2016. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Applied Energy 184: 40-54. DOI: https://doi.org/10.1016/j.apenergy.2016.09.075

Kolokotroni M., Ren X., Davies M., Mavrogianni A., 2012. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build 47: 302-311. DOI: https://doi.org/10.1016/j.enbuild.2011.12.019

Kożuchowski K. (ed), 2000. Pory roku w Polsce. Sezonowe zmiany w środowisku a wieloletnie zmiany klimatyczne. Łodź.

Li Y., Li J., Xu A., Feng Z., Hu C., Zhao G., 2021. Spatial-temporal changes and associated determinants of global heating degree days. International Journal of Environmental Research and Public Health 18(12): 6186. DOI: https://doi.org/10.3390/ijerph18126186

Liu D., Zhao F.Y., Tang G.F., 2010. Active low-grade energy recovery potential for building energycon servation. Renewable and Sustainable Energy Reviews 14(9): 2736-2747. DOI: https://doi.org/10.1016/j.rser.2010.06.005

Livada I., Pyrgou A., Haddad S., Sadeghi M., Santamouris M., 2021. Recent climatic trends and analysis of monthly heating and cooling degree hours in Sydney. Climate 9(9): 114. DOI: https://doi.org/10.3390/cli9070114

MacDonald H., Pedlar J., McKenney D.W., Lawrence K., de Boer K., Hutchinson M.F., 2023. Heating degree day spatial datasets for Canada. Data in Brief 49: 109450. DOI: https://doi.org/10.1016/j.dib.2023.109450

Magli S., Lodi C., Lombroso L., Muscio A., Teggi S., 2015. Analysis of the urban heat island effects on building energy consumption. International Journal of Energy and Environmental Engineering 6: 91-99. DOI: https://doi.org/10.1007/s40095-014-0154-9

Mourshed M., 2011. The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Applied Energy 88: 3737-3746. DOI: https://doi.org/10.1016/j.apenergy.2011.05.024

Moustris K.P., Nastos P.T., Bartzokas A., Larissi I.K., Zacharia P.T., Paliatsos A.G., 2015. Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theoretical and Applied Climatology 122: 517-529. DOI: https://doi.org/10.1007/s00704-014-1308-7

Oke T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 1-24. DOI: https://doi.org/10.1002/qj.49710845502

Oke T.R., Johnson G.T., Steyn D.G., Watson I.D., 1991. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Boundary-Layer Meteoroloy 56: 339-358. DOI: https://doi.org/10.1007/BF00119211

Oke T.R., Mills G., Christen A., Voogt J.A., 2017. Urban climates. Cambridge University Press, Cambridge, UK, ISBN: 978-1-107-42953-6. DOI: https://doi.org/10.1017/9781139016476

Ortiz Beviá M.J., Sánchez-López G., Alvarez-Garcìa F.J., Ruizde Elvira A., 2012. Evolution of heating and cooling degree-days in Spain: Trends and interannual variability. Global and Planetary Change 92-93: 236-247. DOI: https://doi.org/10.1016/j.gloplacha.2012.05.023

Papakostas K., Kyriakis N., 2005. Heating and cooling degree-hours for Athens and Thessaloniki, Greece. Renewable Energy 30(12): 1873-1880. DOI: https://doi.org/10.1016/j.renene.2004.12.002

Papakostas K., Mavromatis T., Kyriakis N., 2010. Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renewable Energy 35: 1376-1379. DOI: https://doi.org/10.1016/j.renene.2009.11.012

Petri Y., Caldeira K., 2015. Impacts of global warming on residential heating and cooling degree-days in the United States. Scientific Reports 5(1): 12427. DOI: https://doi.org/10.1038/srep12427

Ramon D., Allacker K., De Troyer F., Wouters H., van Lipzig N.P., 2020. Future heating and cooling degree days for Belgium under a high-end climate change scenario. Energy Build 216: 109935. DOI: https://doi.org/10.1016/j.enbuild.2020.109935

Sadeqi A., Tabari H., Dinpashoh Y., 2022. Spatio-temporal analysis of heating and cooling degree-days over Iran. Stochastic Environmental Research and Risk Assessment 36: 869-891. DOI: https://doi.org/10.1007/s00477-021-02064-3

Santamouris M., Papnikolaou N., Livada I., Koronakis I., Georgakis C., Argiriou A., Assimakopoulos D.N., 2001. On the impact of urban climate on the energy consumption of buildings. Solar Energy 70(3): 201-216. DOI: https://doi.org/10.1016/S0038-092X(00)00095-5

Shen X., Liu B., 2016. Changes in timing, length and heating degree days of the heating season in central heating zone of China. Scientific Reports 6: 33384. DOI: https://doi.org/10.1038/srep33384

Shen X., Liu B., Zhou D., 2017. Spatiotemporal changes in the length and heating degree days of the heating period in Northeast China. Meteorological Applications 24(1): 135-141. DOI: https://doi.org/10.1002/met.1612

Spinoni J., Vogt J.V., Barbosa P., Dosio A., McCormick N., Bigano A., Füssel H.-M., 2018. Changes of heating and cooling degree-days in Europe from 1981 to 2100. International Journal of Climatology 38: e191-e208. DOI: https://doi.org/10.1002/joc.5362

Szyga-Pluta K., Tomczyk A., Piniewski M., Eini M., 2023b. Past and future changes in the start, end, and duration of the growing season in Poland. Acta Geophysica 71: 3041-3055. DOI: https://doi.org/10.1007/s11600-023-01117-1

Szyga-Pluta K., Tomczyk A., Piotrowicz K., Bednorz E., 2023a. Patterns in the multiannual course of growing season in Central Europe since the end of the 19th century. Quaestiones Geographicae 42(1): 59-74. DOI: https://doi.org/10.14746/quageo-2023-0005

Szyga-Pluta K., Tomczyk A.M., Bednorz E., Piotrowicz K., 2022. Assessment of climate variations in the growing period in Central Europe since the end of eighteenth century. Theoretical and Applied Climatology 149: 1785-1800. DOI: https://doi.org/10.1007/s00704-022-04141-1

Ukey R., Rai A.C., 2021. Impact of global warming on heating and cooling degree days in major Indian cities. Energy and Buildings 244: 111050. DOI: https://doi.org/10.1016/j.enbuild.2021.111050

Ustrnul Z., Wypych A., Czekierda D., 2021. Air temperature change. In: Falarz M. (ed.), Climate change in Poland. Springer Climate. Springer, Cham: 275-330. DOI: https://doi.org/10.1007/978-3-030-70328-8_11

Verbai Z., Lazar I., Kalmar F., 2014. Heating degree day in Hungary. Environmental Engineering and Management Journal 13(11): 2887-2892. DOI: https://doi.org/10.30638/eemj.2014.325

Wątroba J., 2007. Przykład statystycznej analizy danych z wykorzystaniem nowych możliwości Statistica 8. In: Wątroba J. (ed.), Zastosowania statystyki i data mining w badaniach naukowych. StatSoft Polska, Kraków: 51-60.

Wibig J., 2003. Heating degree days and cooling degree days variability in Łódź in the period1931-2000. In: Kłysik K., Oke T.R., Fortuniak K., Grimmond C.S.B., Wibig J. (eds), Fifth International Conference on Urban Climate, 1-5 September 2003. Łódź, Poland. Proceedings 2: 471-474.

Wibig J., Głowicki B., 2002. Trends of minimum and maximum temperature in Poland. Climate Research 20: 123-133. DOI: https://doi.org/10.3354/cr020123