Occurrence of heatwaves in selected regions of Poland and Greece and the characteristics of their biometeorological conditions
Journal cover Quaestiones Geographicae, volume 44, no. 1, year 2025, title Quaestiones Geographicae
PDF

Keywords

air temperature
heatwaves
Humidex
Poznań
Thessaloniki
Poland
Greece

How to Cite

Tomczyk, A. M., & Katragkou, E. (2025). Occurrence of heatwaves in selected regions of Poland and Greece and the characteristics of their biometeorological conditions. Quaestiones Geographicae, 44(1), 107–116. https://doi.org/10.14746/quageo-2025-0007

Abstract

This work aimed to characterise the occurrence of heatwaves and the related bioclimatic conditions in two climate-distinct regions of Europe. This study was based on data of maximum daily air temperature (Tmax), as well as air temperature and humidity at 12:00 UTC, from two meteorological stations in Poznań (Poland) and Thessaloniki (Greece), spanning the summer seasons (the period from May to September) from 1966 to 2022. A hot day was defined as a day with Tmax >90th percentile of the station climatology. Heatwaves were defined as sequences of at least three hot days based on the identified hot days. This study revealed a significant variation in thermal conditions over the examined period in both stations. Both stations showed a statistically significant increase in average Tmax, although changes were more intense in Poznań (0.41°C/10 years). Like Tmax, the 21st-century seasons also stood out in terms of the number of hot days compared to the analysed multi-decade period. This study showed a statistically significant increase in analysed days at both stations, with changes being more intense in Thessaloniki (3.5 days/10 years). The study revealed a significant variation in biometeorological conditions during heatwaves at both stations. Heatwaves in Poznań were characterised by less burdensome conditions compared to those in Thessaloniki.

https://doi.org/10.14746/quageo-2025-0007
PDF

Funding

This work was funded by “Excellence Initiative - Research University” program (grant number 131/07/POB1/0003).

References

Ballester J., Quijal-Zamorano M., Méndez Turrubiates R.F., Pegenaute F., Herrmann F.R., Robine J.M., Basagaña X., Tonne C., Antó J.M., Achebak H., 2023. Heat-related mortality in Europe during the summer of 2022. Nature Medicine 29(7): 1857-1866. DOI: https://doi.org/10.1038/s41591-023-02419-z

Błażejczyk K., Błażejczyk M., 2006. BioKlima ver.2.6. Polish Academy of Sciences, Warszawa.

Founda D., Santamouris M., 2017. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports 7: 10973. DOI: https://doi.org/10.1038/s41598-017-11407-6

Founda D., Giannakopoulos C., 2009. The exceptionally hot summer of 2007 in Athens, Greece – A typical summer in the future climate? Global and Planetary Change 67: 227-236. DOI: https://doi.org/10.1016/j.gloplacha.2009.03.013

Founda D., Katavoutas G., Pierros F., Mihalopoulos N., 2022. The extreme heat wave of summer 2021 in Athens (Greece): Cumulative heat and exposure to heat stress. Sustainability 14: 7766. DOI: https://doi.org/10.3390/su14137766

Founda D., Pierros F., Petrakis M., Zerefos C., 2015. Interdecadal variations and trends of the urban heat island in Athens (Greece) and its response to heat waves. Atmospheric Research 161: 1-13. DOI: https://doi.org/10.1016/j.atmosres.2015.03.016

Giannakopoulos C., Kostopoulou E., Varotsos K.V., Tziotziou K., Plitharas A., 2011. An integrated assessment of climate change impacts for Greece in the near future. Regional Environmental Change 11: 829-843. DOI: https://doi.org/10.1007/s10113-011-0219-8

Giannaros C., Agathangelidis I., Papavasileiou G., Galanaki E., Kotroni V., Lagouvardos K., Giannaros T.M., Cartalis C., Matzarakis A., 2023. The extreme heat wave of July-August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework. Science of the Total Environment 857: 159300. DOI: https://doi.org/10.1016/j.scitotenv.2022.159300

Giannopoulou K., Livada I., Santamouris M., 2014. The influence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustainable Cities and Society 10: 184-194. DOI: https://doi.org/10.1016/j.scs.2013.09.004

Graczyk D., Kundzewicz Z.W., Choryński A., Førland E.J., Pińskwar I., Szwed M., 2019. Heat-related mortality during hot summers in Polish cities. Theoretical and Applied Climatology 136: 1259-1273. DOI: https://doi.org/10.1007/s00704-018-2554-x

Graczyk D., Pińskwar I., Choryński A., 2022. Heat-related mortality in two regions of Poland: Focus on urban and rural areas during the most severe and long-lasting heatwaves. Atmosphere 13(3): 390. DOI: https://doi.org/10.3390/atmos13030390

Hoy A., Hänsel S., Maugeri M., 2020. An endless summer: 2018 heat episodes in Europe in the context of secular temperature variability and change. International Journal of Climatology 40(15): 6315-6336. DOI: https://doi.org/10.1002/joc.6582

Katavoutas G., Founda D., 2019. Response of urban heat stress to heat waves in Athens (1960-2017). Atmosphere 10(9): 483. DOI: https://doi.org/10.3390/atmos10090483

Keppas S., Parliari D., Kontos S., Poupkou A., Papadogiannaki S., Tzoumaka P., Kelessis A., Dimitrios M., 2021. Urban heat island and future projections: A study in Thessaloniki, Greece. In: Dobrinkova N., Gadzhev G. (eds), Environmental protection and disaster risks; studies in systems, decision and control. Vol. 361. Springer, Cham, Switzerland: 201-212. DOI: https://doi.org/10.1007/978-3-030-70190-1_14

Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259-263. DOI: https://doi.org/10.1127/0941-2948/2006/0130

Koźmiński Cz., Michalska B., 2013. Bioclimatology exercises. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego, Szczecin.

Kouis P., Kakkoura M., Ziogas K., Paschalidou A., Papatheodorou S.I., 2019. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki, Greece. Science of the Total Environment 647: 1351-1358. DOI: https://doi.org/10.1016/j.scitotenv.2018.08.106

Krzyżewska A., 2014. Warm and cold waves in South-Eastern (V) bioclimatic region in years 1981-2010. Annales UMCS, Geographia, Geologia, Mineralogia et Petrographia 69(2):143-154. DOI: https://doi.org/10.1515/umcsgeo-2015-0009

Krzyżewska A., 2015. Severe heatwaves in Lublin. Przegląd Geofizyczny 60(3-4): 207-215.

Krzyżewska A., Dyer J., 2018. The August 2015 mega-heatwave in Poland in the context of past events. Weather 73(7): 207-214. DOI: https://doi.org/10.1002/wea.3244

Krzyżewska A., Wereski S., Demczuk P., 2019. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 75(6): 183-189. DOI: https://doi.org/10.1002/wea.3497

Kuchcik M., 2017. Thermal conditions in Poland at the turn of the 20th and 21st centuries, and their impact on mortality. Prace Geograficzne 263. IGiPZ PAN Warszawa.

Kuchcik M., 2021. Mortality and thermal environment (UTCI) in Poland – Long-term, multi-city study. International Journal of Biometeorology 65: 1529-1541. DOI: https://doi.org/10.1007/s00484-020-01995-w

Lhotka O., Kyselý J., 2015. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology 35(7): 1232-1244. DOI: https://doi.org/10.1002/joc.4050

Muthers S., Laschewski L., Matzarakis A., 2017. The summers 2003 and 2015 in South-West Germany: Heat waves and heat-related mortality in the context of climate change. Atmosphere 8: 224. DOI: https://doi.org/10.3390/atmos8110224

NOAA. 2024. Online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series.

Owczarek M., 2019. The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology 137: 855-869. DOI: https://doi.org/10.1007/s00704-018-2633-z

Papadopoulos G., Keppas S.C., Parliari D., Kontos S., Papadogiannaki S., Melas D., 2024. Future projections of heat waves and associated mortality risk in a coastal Mediterranean city. Sustainability 16: 1072. DOI: https://doi.org/10.3390/su16031072

Parliari D., Keppas S., Papadogiannaki S., Papadopoulos G., Kontos S., Melas D., 2023. Projections of heat-related mortality under the impact of climate change in Thessaloniki, Greece. Environmental Sciences Proceedings 26: 6072. DOI: https://doi.org/10.3390/environsciproc2023026072

Półrolniczak M., Tomczyk A.M., Bednorz E., 2024. Biometeorological conditions in Poznań, Poland: Insights from in situ summer data. Atmosphere 15(4): 448. DOI: https://doi.org/10.3390/atmos15040448

Półrolniczak M., Tomczyk A.M., Kolendowicz L., 2018. Thermal conditions in the city of Poznań (Poland) during selected heat waves. Atmosphere 9: 11. DOI: https://doi.org/10.3390/atmos9010011

Porębska M., Zdunek M., 2013. Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorolologische Zeitschrift 22(5): 533-540. DOI: https://doi.org/10.1127/0941-2948/2013/0455

Richling A., Solon J., Macias A., Balon J., Borzyszkowski J., Kistowski M. (eds), 2021. Regionalna geografia fizyczna Polski. Bogucki Wydawnictwo Naukowe, Poznań, Poland.

Russo S., Sillmann J., Fischer E.M., 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters 10(12): 124003. DOI: https://doi.org/10.1088/1748-9326/10/12/124003

Scoccimarro E., Fogli P.G., Gualdi S., 2017. The role of humidity in determining scenarios of perceived temperature extremes in Europe. Environmental Research Letters 12(11): 114029. DOI: https://doi.org/10.1088/1748-9326/aa8cdd

Shevchenko O., Lee H., Snizhko S., Mayer H., 2014. Long-term analysis of heat waves in Ukraine. International Journal of Climatology 34: 1642-1650. DOI: https://doi.org/10.1002/joc.3792

Shevchenko O., Snizhko S., Zapototskyi S., Matzarakis A., 2022. Biometeorological conditions during the August 2015 mega-heat wave and the Summer 2010 mega-heat wave in Ukraine. Atmosphere 13: 99. DOI: https://doi.org/10.3390/atmos13010099

Středová H., Středa T., Litschmann T., 2015. Smart tools of urban climate evaluation for smart spatial planning. Moravian Geographical Reports 23: 47-57. DOI: https://doi.org/10.1515/mgr-2015-0017

Theoharatos G., Pantavou K., Mavrakis A., Spanou A., Katavoutas G., Efstathiou P., Mpekas P., Asimakopoulos D., 2010. Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research 110: 152-161. DOI: https://doi.org/10.1016/j.envres.2009.12.002

Tolika K., 2019. Assessing heatwaves over Greece using the excess heat factor (EHF). Climate 7(1): 9. DOI: https://doi.org/10.3390/cli7010009

Tomczyk A.M., Bednorz E., 2016. Heat waves in Central Europe and their circulation conditions. International Journal of Climatology 36(2): 770-782. DOI: https://doi.org/10.1002/joc.4381

Tomczyk A.M., Bednorz E., 2020. The extreme year – Analysis of thermal conditions in Poland in 2018. Theoretical and Applied Climatology 139(1): 251-260. DOI: https://doi.org/10.1007/s00704-019-02968-9

Tomczyk A.M., Bednorz E., 2023. Thermal stress during heat waves and cold spells in Poland. Weather and Climate Extremes 42: 100612. DOI: https://doi.org/10.1016/j.wace.2023.100612

Tomczyk A.M., Bednorz E., Matzarakis A., 2020. Human-biometeorological conditions during heatwaves in Poland. International Journal of Climatology 40(12): 5043-5055. DOI: https://doi.org/10.1002/joc.6503

Tomczyk A.M., Bednorz E., Półrolniczak M., 2019b. The occurrence of heat waves in Europe and their circulation conditions. Geografie 124(1): 1-17. DOI: https://doi.org/10.37040/geografie2019124010001

Tomczyk A.M., Bednorz E., Półrolniczak M., Kolendowicz L., 2019a. Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology 137(3-4): 1909-1923. DOI: https://doi.org/10.1007/s00704-018-2715-y

Tomczyk A.M., Bednorz E., Szyga-Pluta K., Owczarek M., 2023. Effect of regional baric systems on the occurrence of bioclimatic conditions in Poland. Quaestiones Geographicae 42(1): 161-177. DOI: https://doi.org/10.14746/quageo-2023-0011

Tomczyk A.M., Owczarek M., 2020. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology 139(3): 893-905. DOI: https://doi.org/10.1007/s00704-019-02998-3

Tomczyk A.M., Piniewski M., Eini M.R., Bednorz E., 2022. Projections of changes in maximum air temperature and hot days in Poland. International Journal of Climatology 42(10): 5242-5254. DOI: https://doi.org/10.1002/joc.7530

Twardosz R., 2019. Anomalously warm months in 2018 in Poland in relation to airflow circulation patterns. Weather 74: 374-382. DOI: https://doi.org/10.1002/wea.3588

Ustrnul Z., Wypych A., Czekierda D., 2021. Air Temperature Change. In: Falarz M. (ed.), Climate change in Poland – past, present, future. Springer Climate, Cham: 275-330. DOI: https://doi.org/10.1007/978-3-030-70328-8_11

Wibig J., 2018. Heat waves in Poland in the period 1951-2015: Trends, patterns and driving factors. Meteorology Hydrology and Water Management 6(1): 37-45. DOI: https://doi.org/10.26491/mhwm/78420

Wibig J., 2021. Hot Days and heat waves in Poland in the period 1951-2019 and the circulation factors favoring the most extreme of them. Atmosphere 12(3): 340. DOI: https://doi.org/10.3390/atmos12030340

Zoumakis M., Papadakis N., Benos A., Zoumakis N., Efstathiou G., Staliopoulou M., 2012. Mortality and bioclimatic discomfort in the municipality of Thessaloniki, Greece. In Proceedings of the Protection and Restoration of the Environment XI Conference, Thessaloniki, Greece, 3-6 July 2012: 1771-1784.

Zoumakis M., Papadakis N., Benos A., Zoumakis N., Prevezanos M., Vosniakos F., Karakolios E., Kassomenos P., Tzekis P., 2013. Heat-related mortality in the municipality of Thessaloniki during the period from 1945 to 2012. Journal of Environmental Protection and Ecology 14: 1140-1147.