Abstract
The study addresses the influence of climatic conditions on changes in the ice regime of Carpathian rivers (Central Europe) over the period 1980–2020. The main objective of this study is to identify interrelationships between air temperature, water temperature, river flow, and changes in the occurrence of ice cover (IC) in mountain areas. Rivers that are not significantly influenced by human activity (i.e. seminatural) were selected for analysis. Analyses were based on data obtained from 13 hydrological stations, 7 climatological stations, and the Climatic Research Unit gridded Time Series (CRU-TS) high-resolution climatological dataset. The study showed a decrease in the frequency of IC in the study area, reaching 7.25 days per decade, with the greatest changes recorded in November and February. At the beginning of the winter period (November), the decrease in the frequency of IC is mainly influenced by the increasing water temperature (by an average of 0.85°C per decade), whereas in the middle of the winter period (especially February), it is influenced by the increase in discharge of the studied rivers (by 1.1 m3 per decade on average in February). Both the increase in water temperature and the increase in discharge during the winter period are due to the increase in air temperature, averaging 0.47°C per decade during the winter period.
Funding
This research was funded in whole by the National Science Centre, Poland (grant no. 2020/39/O/ST10/00652).
References
Anghileri D., Pianosi F., Soncini-Sessa R., 2014. Trend detection in seasonal data: From hydrology to water resources. Journal of Hydrology 511: 171-179. DOI: https://doi.org/10.1016/j.jhydrol.2014.01.022
Ashton G.D., 1986. River and lake ice engineering. Water Resources Publications, Littleton, Colorado.
Ashton G.D., 2011. River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology 68(1-2): 3-19. DOI: https://doi.org/10.1016/j.coldregions.2011.05.004
Asuero A.G., Sayago A., González A.G., 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry 36(1): 41-59. DOI: https://doi.org/10.1080/10408340500526766
Bagnold R.A., 1966. An approach to the sediment transport problem from general physics. Professional Paper 422. DOI: https://doi.org/10.3133/pp422I
Batima P., Batnasan N., Bolormaa B., 2004. Trends in river and lake ice in Mongolia. AIACC (Assessments of Impacts and Adaptations to Climate Change) Working Paper No. 4.
Beltaos S., (ed.) 2013. River ice formation. Committee on River Ice Processes and the Environment, Canadian Geophysical Union Hydrology Section, Edmonton.
Bochenek W., Kijowska-Strugała M., 2022. Zmiany w strukturze odpływu wody ze zlewni karpackich w półroczu hydrologicznym zimowym w latach 19812020. Przegląd Geograficzny 94(4): 503-519. DOI: https://doi.org/10.7163/PrzG.2022.4.5
Brown D.R., Arp C.D., Brinkman T.J., Cellarius B.A., Engram M., Miller M.E., Spellman K.V., 2023. Long-term change and geospatial patterns of river ice cover and navigability in southcentral Alaska detected with remote sensing. Arctic, Antarctic, and Alpine Research 55(1): 1-18. DOI: https://doi.org/10.1080/15230430.2023.2241279
Chen Y., She Y., 2020. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Regions Science and Technology 176: 103091. DOI: https://doi.org/10.1016/j.coldregions.2020.103091
Cyberska B., 1975. Wpływ zbiornika retencyjnego na transformację naturalnego reżimu termicznego rzeki. Prace IMGW, 4: 45-108.
Dynowska I., 1971. Typy reżimów rzecznych w Polsce, Zeszyty Naukowe Uniwersytet Jagielloński, Prace Geograficzne: 28.
Fukś M., 2023. Changes in river ice cover in the context of climate change and dam impacts: A review. Aquatic Sciences 85(113): 1-23. DOI: https://doi.org/10.1007/s00027-023-01011-4
Fukś M., 2024. Assessment of the impact of dam reservoirs on river ice cover – An example from the Carpathians (central Europe). The Cryosphere 18: 2509-2529. DOI: https://doi.org/10.5194/tc-18-2509-2024
Fukś M., Kędra M., Wiejaczka Ł., 2024. Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis. Stochastic Environmental Research and Risk Assessment 38: 4275-4294. DOI: https://doi.org/10.1007/s00477-024-02803-2
Gołek J., 1957. Zjawiska lodowe na rzekach polskich. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego, Warszawa: 48.
Graf R., Wrzesiński D., 2020. Detecting patterns of changes in river water temperature in Poland. Water 12(5): 1-20. DOI: https://doi.org/10.3390/w12051327
Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J.-H., 2021. Atlas. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B. (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 1927-2058. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Hamed K.H., 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349(3-4): 350-363. DOI: https://doi.org/10.1016/j.jhydrol.2007.11.009
Hamed K.H., Rao A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204(1-4): 182-196. DOI: https://doi.org/10.1016/S0022-1694(97)00125-X
Hanus S., Hrachowitz M., Zekollari H., Schoups G., Vizcaino M., Kaitna R., 2021. Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrology and Earth System Sciences 25: 3429-3453. DOI: https://doi.org/10.5194/hess-25-3429-2021
Harris I., Osborn T.J., Jones P., Lister D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(109): 1-18. DOI: https://doi.org/10.1038/s41597-020-0453-3
Hauke J., Kossowski T., 2011. Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae 30(2): 87-93. DOI: https://doi.org/10.2478/v10117-011-0021-1
IMWM-NRI [Institute of Meteorology and Water Management – National Research Institute], 2024. Online: https://danepubliczne.imgw.pl/ (accessed 31 July 2024).
Jonkers A.R.T., Sharkey K.J., 2016. The differential warming response of Britain’s rivers (1982-2011). Plos One 11(11): e0166247. DOI: https://doi.org/10.1371/journal.pone.0166247
Kędra M., 2020. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 12(1): 1-15. DOI: https://doi.org/10.3390/w12010283
Kędra M., Wiejaczka Ł, 2018. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Science of the Total Environment 626: 1474-1483. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.044
Kędzia S., Chrustek P., Kubacka D., Pyrc R., 2023. Variability and changes of the height and duration of snow cover on the Gąsienicowa Glade (Tatras). International Journal of Climatology 43(15): 7018-7031. DOI: https://doi.org/10.1002/joc.8249
Kendall, M.G., 1975. Rank correlation methods. Oxford University Press, Oxford.
Kochanek K., Rutkowska A., Baran-Gurgul K., Kuptel-Markiewicz I., Mirosław-Świątek D., Grygoruk M., 2024. Analysis of changes in the occurrence of ice phenomena in upland and mountain rivers of Poland. Plos One 19(7): e0307842. DOI: https://doi.org/10.1371/journal.pone.0307842
Laghari A.N., Vanham D., Rauch W., 2012. To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal 57(1): 103-117. DOI: https://doi.org/10.1080/02626667.2011.637040
Lind L., Alfredsen K., Kuglerová L., Nilsson C., 2016. Hydrological and thermal controls of ice formation in 25 boreal stream reaches. Journal of Hydrology 540: 797-811. DOI: https://doi.org/10.1016/j.jhydrol.2016.06.053
Magnuson J.J., Robertson D.M., Benson B.J., Wynne R.H., Livingstone D.M., Arai T., Assel R.A., Barry R.G., Card V.V., Kuusisto E., Granin N.G., Prowse T.D., Stewart K.M., Vuglinski V.S., 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289(5485): 1743-1746. DOI: https://doi.org/10.1126/science.289.5485.1743
Mann H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13: 245-259. DOI: https://doi.org/10.2307/1907187
Marsz A., Styszyńska A., 2023. Non-stationary of the air temperature course over Europe – change of the thermal regime in Europe in 1987-1989 and its causes. Prace Geograficzne 170: 9-46. DOI: https://doi.org/10.4467/20833113PG.23.001.17489
Marszelewski W., Pius B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal 61(8): 1430-1442. DOI: https://doi.org/10.1080/02626667.2015.1040800
Mostowik K., Siwek J., Kisiel M., Kowalik K., Krzysik M., Plenzler J., Rzonca B., 2019. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena 182: 104174. DOI: https://doi.org/10.1016/j.catena.2019.104174
Muelchi R., Rößler O., Schwanbeck J., Weingartner R., Martius O., 2021. River runoff in Switzerland in a changing climate – Changes in moderate extremes and their seasonality. Hydrology and Earth System Sciences 25(6): 3577-3594. DOI: https://doi.org/10.5194/hess-25-3577-2021
Newton A.M.W, Mullan D.J., 2021. Climate change and Northern Hemisphere lake and river ice phenology from 1931-2005. The Cryosphere 15(5): 2211-2234. DOI: https://doi.org/10.5194/tc-15-2211-2021
North R.P., Livingstone D.M., Hari R.E., Köster O., Niederhauser P., Kipfer R., 2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters 3(3): 341-350. DOI: https://doi.org/10.5268/IW-3.3.560
Pawłowski B., 2017. Przebieg zjawisk lodowych dolnej Wisły w latach 1960-2014. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.
Pekárová P., Miklánek P., Halmová D., Onderka M., Pekár J., Kučárová K., Liová S., Škoda P., 2011. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). Journal of Hydrology 400(3-4): 333-340. DOI: https://doi.org/10.1016/j.jhydrol.2011.01.048
Rajwa-Kuligiewicz A., Bojarczuk A., 2024. Evaluating the impact of climatic changes on streamflow in headwater mountain catchments with varying human pressure. An example from the Tatra Mountains (Western Carpathians). Journal of Hydrology: Regional Studies 53: 101755. DOI: https://doi.org/10.1016/j.ejrh.2024.101755
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324): 1379-1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Siwek J., Mostowik K., Liova S., Rzonca B., Wacławczyk P., 2022. Baseflow trends for midsize Carpathian catchments in Poland and Slovakia in 1970-2019. Water 15(1): 1-17. DOI: https://doi.org/10.3390/w15010109
Soja R., 2002. Hydrologiczne aspekty antropopresji w polskich Karpatach. Prace Geograficzne. Polska Akademia Nauk, Warszawa.
Soja R., Wiejaczka Ł, 2014. The impact of a reservoir on the physicochemical properties of water in a mountain river. Water and Environment Journal 28(4): 473-482. DOI: https://doi.org/10.1111/wej.12059
Stickler M., Alfredsen K.T., Linnansaari T., Fjeldstad H.P., 2010. The influence of dynamic ice formation on hydraulic heterogeneity in steep streams. River Research and Applications 26: 1187-1197. DOI: https://doi.org/10.1002/rra.1331
Szczerbińska A., 2023. Zmienność zjawisk lodowych w dorzeczu górnej Wisły. Ph. D. thesis, Institute of Geography and Spatial Management, Jagiellonian University, Poland.
Theil H., 1992. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In: Raj B., Koerts J. (eds), Henri Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics, vol 23. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-011-2546-8_20
Thellman A., Jankowski K.J., Hayden B., Yang X., Dolan W., Smits A.P., O’Sullivan A.M., 2021. The ecology of river ice. Journal of Geophysical Research: Biogeosciences 126(9): 1-28. DOI: https://doi.org/10.1029/2021JG006275
Viviroli D., Dürr H.H., Messerli B., Meybeck M., Weingartner R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43: 1-13. DOI: https://doi.org/10.1029/2006WR005653
Viviroli D., Weingartner R., 2004. The hydrological significance of mountains: From regional to global scale. Hydrology and Earth System Sciences s 8(6): 1017-1030. DOI: https://doi.org/10.5194/hess-8-1017-2004
Wang F., Shao W., Yu H., Kan G., He X., Zhang D., Ren M., Wang G., 2020. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science 8(14): 1-12. DOI: https://doi.org/10.3389/feart.2020.00014
Wasserstein R.L., Lazar N.A., 2016. The ASA statement on p-values: Context, process, and purpose. The American Statistician 70(2): 129-133. DOI: https://doi.org/10.1080/00031305.2016.1154108
Wasserstein R.L., Schirm A.L., Lazar N.A., 2019. Moving to a world beyond “p < 0.05”. The American Statistician 73: 1-19. DOI: https://doi.org/10.1080/00031305.2019.1583913
Wiejaczka Ł., 2011. Wpływ zbiornika wodnego „Klimkówka” na abiotyczne elementy środowiska przyrodniczego w dolinie Ropy. Prace Geograficzne IGiPZ PAN 229.
Witkowski K., 2021. Man’s impact on the transformation of channel patterns (the Skawa River, southern Poland). River Research and Applications 37(2): 150-162. DOI: https://doi.org/10.1002/rra.3702
Wohl E.E., 2013. Mountain rivers. Water Resources Monograph 14, American Geophysical Union, Washington DC.
Yang X., Pavelsky T.M., Allen G.H., 2020. The past and future of global river ice. Nature 577(7788): 69-73. DOI: https://doi.org/10.1038/s41586-019-1848-1
Yue S., Wang C., 2004. The Mann-Kendall test was modified by effective sample size to detect trends in serially correlated hydrological series. Water Resources Management 18(3): 201-218. DOI: https://doi.org/10.1023/B:WARM.0000043140.61082.60
Yue S., Wang C.Y., 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resources Research 38(6): 1-7. DOI: https://doi.org/10.1029/2001WR000861
License
Copyright (c) 2025 Maksymilian Fukś, Łukasz Wiejaczka

This work is licensed under a Creative Commons Attribution 4.0 International License.
