Natural rhythms of climate variability and anthropopressure (anthropopressure will not overcome the natural rhythms of climate variability)
Journal cover Quaestiones Geographicae, volume 44, no. 1, year 2025, title Quaestiones Geographicae
PDF

Keywords

paleoclimate
anthropopressure

How to Cite

Stankowski, W. (2025). Natural rhythms of climate variability and anthropopressure (anthropopressure will not overcome the natural rhythms of climate variability). Quaestiones Geographicae, 44(1), 145–150. https://doi.org/10.14746/quageo-2025-0010

Abstract

The transformations of the Earth’s atmosphere have always been conditioned by cosmic-astronomical factors and natural “life processes of the Earth.” Human pressure has been increasing for several thousand years, but only in the last three centuries has anthropopressure reached a global scale, modifying the state of the atmosphere. The rhythm of energy fluctuations over the last approximately 130,000 years, including the youngest millennia (the so-called Late Glacial and Holocene) and contemporary times with human influence, allow us to predict the approaching end of the current climatic optimum.

https://doi.org/10.14746/quageo-2025-0010
PDF

References

Burrougher W.J., 2001. Climate change – a Multidisciplinary approach. University Press Cambridge.

Dawson A.L., 1992. Ice Age Earth. Late Quaternary Geology and Climate. Routledge, London and New York.

Earle S., 2019. Physical geology, 2nd ed. BC Campus Open Edition, Canada.

Fordham D.A., Jackson S.T., Brown S.C., Huntley B., Brook B.W., Dahl-Jensen D., Gilbert M.T.P., Otto-Bliesner B.L., Svensson A., Theodoridis S., Wilmshurst J.M., Buettel J.C., Canteri E., McDowell M., Orlando L., Pilowsky J.A., Rahbek C., Nogues-Bravo D., 2020. Using paleo-archives to safeguard biodiversity under climate change. Science 369(6507), abc5654. DOI: https://doi.org/10.1126/science.abc5654

Goslar T., 1996. Naturalne zmiany atmosferycznej koncentracji radiowęgla w okresie szybkich zmian klimatu na przełomie Vistulianu i Holocenu. Geochronometria 15.

Houghton J., 2009. Glacial Warming. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511841590

Jania J., 1985. Zrozumieć lodowce. Wydawnictwo Śląskie.

Jania J., 1993. Glacjologia. Nauka o lodowcach. PWN, Warszawa.

Shackleton N.J., 1967. Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed. Nature 215(5096). DOI: https://doi.org/10.1038/215015a0

Shackleton N.J., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6(3-4): 183-190. DOI: https://doi.org/10.1016/0277-3791(87)90003-5

Shackleton N.J., Obdyke N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3(1): 39-55. DOI: https://doi.org/10.1016/0033-5894(73)90052-5

Stankowski W., 2023. The role of oxygen in the functioning of the Earth system: past, present and future. Geologos 29(2): 117-131. DOI: https://doi.org/10.14746/logos.2023.29.2.11

Usoskin I.G., 2017. A history of solar activity over millennia. Living Reviews in Solar Physics 20(2). DOI: https://doi.org/10.1007/s41116-023-00036-z

Wu C.-J., Krivova N.A., Solanki S.K., Usoskin I.G., 2018. Solar total and spectral irradiance reconstruction over the last 9000 years. Astronomy & Astrophysics 620, A120. DOI: https://doi.org/10.1051/0004-6361/201832956

Zalasiewicz J., Williams M., Haywood A., Ellis M., 2011. The Antropocene: a new epoch of geological time? Philosophical Transactions of the Royal Society Mathematical, Physical and Engineering Sciences, 369(1938): 835-841. DOI: https://doi.org/10.1098/rsta.2010.0339