Abstract
In ungauged catchments, flood hydrographs are usually simulated/reconstructed by simple rainfall-runoff and routing models. Horton’s and Schumm’s ratios serve as the input data for many of these models. In this paper, more than 800 Carpathian catchments (up to 35.2 km2 in area) were investigated in context of the “Horton’s and Schumm’s laws”. Results reveal that the “law of stream number” and “law of stream areas” are fulfilled in almost all catchments. The mean that values of the bifurcation ratio (RB) and the area ratio (RA) reach 3.8 and 4.8, respectively, and are thus comparable to values reported in other regions of the world. However, the “law of stream lengths” is not fulfilled in more than half of the catchments, which is not consistent with many theoretical studies reported in the literature. Only 383 (48%) catchments fulfill the “law of stream length”, with the mean value of the length ratio (RL)=2.3. There was no relationship found between the geological/geomorphological settings that influence river system development and the spatial distribution of catchments where the “law of stream length” was or was not was fulfilled. A similar conclusion was reached for the spatial distribution of the RB, RL, and RA ratios. These results confirmed that the use of Horton’s and Schumm’s ratios for the evaluation of the influence of geological/geomorphological settings on the river system development is limited. Among the lumped hydrological models, those requiring the RB, RL, and RA ratios have been extensively studied over last decades. This study suggests that the application of these models may be limited in small catchment areas; therefore, more attention should be placed on the development of hydrological models where the RB, RL, and RA ratios are not necessary.
References
Ariza-Villaverde A.B., Jimenez-Hornero F.J., Gutierrez de Rave E., 2013. Multifractal analysis applied to the study of the accuracy of DEM based stream derivation. Geomorphology 197: 85-95.
Bajkiewicz-Grabowska E, 1987. Systemy rzeczne i stopień ich uporządkowania (The river systems and the degree of their order). Przegląd Geofizyczny 32(3): 303-318.
Bohner J., McCloy K.R., Strobl J., (eds.) 2006. SAGA Analysis and Modelling Applications. Gottinger Geographische Abhandlungen 115: 1-130.
Boni G., Ferraris L., Giannoni F., Roth G., Rudari R., 2007. Flood probability analysis for un gauged watersheds by means of a simple distributed hydrologic model. Advances in Water Resources 30: 2135-2144.
Bras R., L., Rodriguez-Iturbe I., 1989. A review of the search for quantitative link between hydrologic response and fluvial geomorphology. IAHS Publication 181: 149-163.
Bryndal T., 2008. Parametry zlewni w których wystąpiły lokalne powodzie (Parameters of basins where small-scale flooding occurred). ANNALES UMCS, sec. B, 63(10): 176-200.
Bryndal T., 2012. Sieć rzeczna małych zlewni pogórzy Strzyżowskiego Dynowskiego i Przemyskiego w świetle praw Hortona i Schumma - implikacje dla modelowania hydrologicznego przepływu (The river network in small basins of Strzyżowskie Dynowskie and Przemyskie Footfills in the context of the Horton’s and Schumm’s laws - implications for hydrological modelling of the discharge). Monografie Komisji Hydrologicznej PTG 1: 39-50.
Bryndal T., 2014a. Identyfikacja małych zlewni podatnych na formowanie gwałtownych wezbrań w Karpatach Polskich (Identification of small catchments prone to flash flood generation in the Polish Carpathians). Prace Monograficzne Uniwersytetu Pedagogicznego, 690: 3-180.
Bryndal, T. 2014b. A method for identification of small Carpathian catchments more prone to flash flood generation.
Based on the example of south-eastern part of the Polish Carpathians. Carpathian Journal of Earth and Environmental Sciences 9(3): 109-122.
Ciupa T., 2010. Wpływ zagospodarowania terenu na odpływ i transport fluwialny w małych zlewniach na przykładzie Sufragańca i Sinicy (The impact of land use on runoff and fluvial transport in small river catchments - based on the Sufraganie and Silnica rivers). Wydawnictwo Uniwersytetu Humanistyczno- Przyrodniczego J. Kochanowskiego, Kielce.
Cox K.G., 1989. The role of mantle plumes in the development of continental drainage patterns. Nature 342: 873-877.
Daniel J.R.K., 1981. Drainage density as a index of climatic geomorphology. Journal of Hydrology 50: 147-154.
Dobija A., Dynowska I., 1975. Znaczenie parametrów fizjograficznych dla ustalenia wielkości odpływu rzecznego (The importance of physiographic parameters for determining of the of the river outflow magnitude), Folia Geographica series Geographica Physica 9: 77-127.
Furey P.R., Troutman B.M., 2008. A consistent framework for Horton regression statistics that leads to a modified Hack's law. Geomorphology 102(3-4): 603-614.
Garcija-Ruitz J.M., Otalora F., 1992. Fractal trees and Horton’s laws. Mathematical Geology 24(1): 61-71.
Gutry-Korycka M., 1987. Statystyczne metody opisu sieci rzecznej (Statistical methods of description of networks). Przegląd Geofizyczny 32(2): 147-163.
Hengl, T., Reuter, H.I. (eds), 2009. Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam.
Horton R.E., 1945. Erosional development of streams and their drainage basins: hydrophysical approach to the quantitative morphology. Geological Society of America Bulletin 56: 275-370.
Jain S.K., Singh R.D., Seth S.M., 2000. Design Flood Estimation Using GIS Supported GIUH Approach. Water Resources Management 14: 369-376.
Jasiewicz J., Metz M., 2011. A new GRASS GIS toolkit for Hortonian analysis of drainage networks. Computers & Geosciences 37: 1162-1173. doi:10.1016/j.cageo.2011.03.003
Kondracki J., 1994. Geografia regionalna Polski (The regional geography of Poland), Wydawnictwo Naukowe PWN, Warszawa.
Kirby M.J., 1976. Test of the random network model, and its application to basin hydrology. Earth Surface Processes 1: 197-212.
Kirchner J.W., 1993. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks, Geology 21: 591-594.
Kroczak R., 2010. Geomorfologiczne i hydrologiczne skutki funkcjonowania dróg polnych na Pogórzu Ciężkowickim (Geomorphological and hydrological effects of unmetalled road network functioning on the example of Ciężkowickie Foothills), Prace Geograficzne IGiPZ PAN w Krakowie 225: 1-138.
La Barbera P., Roso R., 1992. On the fractal dimension of stream networks, Water Recourses Research 25: 735-741.
Lindsay, J.B., 2005. The terrain analysis system: A tool for hydro-geomorphic applications. Hydrological Processes 19: 1123-1130.
License
© Faculty of Geographical and Geological Sciences, Adam Mickiewicz University.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.