Daily course of the soil temperature in summer in chosen ecosystems of Słowiński National Park, northern Poland
PDF

Keywords

soil temperatures
correlation
Słowiński National Park
Baltic Sea coast

How to Cite

Bednorz, E., & Kolendowicz, L. (2010). Daily course of the soil temperature in summer in chosen ecosystems of Słowiński National Park, northern Poland. Quaestiones Geographicae, 29(1), 5–12. https://doi.org/10.2478/v10117-010-0001-x

Abstract

Patterns of the daily changes of the soil temperature in summer at three different ecosystems within the Słowiński National Park were analyzed. Strong correlation between the solar radiation and the soil temperature was found, particularly for the bare sandy surfaces, while the plant and humus cover hampers the solar energy flux to the soil. In the same way, correlations between the temperature of soil surface and the air temperature were computed. Finally, logarithmic models for the relationship between the global solar radiation and the soil surface temperature and between the soil surface temperature and the air temperature were constructed.

https://doi.org/10.2478/v10117-010-0001-x
PDF

References

Alvesag G. & Jansson P. E., 1997. Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis. Agricultural and Forest Meteorology 88: 47-56.

Bednarek A., 1966. O wpływie temperatury powietrza na kształtowanie temperatury gleby w warunkach ograniczonego dopływu energii promieniowania Słońca. Przegląd Geofizyczny 11(4): 251-260.

Bednorz E., Kolendowicz L. & Szyga-Pluta K., 2001. Topoclimates of the part of Słowiński National Park. Dokumentacja Geograficzna PAN Warszawa 23: 19-31.

Bollero G. A., Bullock D. G. & Hollinger S. E., 1996. Soil temperature and planting date effects on corn yield, leaf area, and plant development. Agronomy Journal 88: 385-390.

Bond-Lamberty B., Wang C. & Gower S. T., 2005. Spatiotemporal measurement and modeling of stand-level boreal forest soil temperatures. Agricultural and Forest Meteorology 131: 27-40.

Gaumont-Guay D., Black T. A., Griffis T. J., Barra A. G., Jassal R. S. & Nesic Z.: 2006. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology 140: 220-235.

Hariharan G., Kannan K. & Sharma K. R., 2009. Haar wavelet in estimating depth profile of soil temperature. Applied Mathematics and Computation 210: 119-125.

Hu Q. & Feng S., 2003. A daily soil temperature dataset and soil temperature climatology of the contiguous United States. Journal of Applied Meteorology 42: 1139-1156.

Kane E. S. & Vogel J. G., 1992. Patterns of Total Ecosystem Carbon Storage with Changes in Soil Temperature in Boreal Black Spruce Forests. Ecosystems 12: 322-335.

Kaspar T. C. & Bland W. L., 1992. Soil temperature and root growth. Soil Scicience 154: 290-299.

Keryn I. P., Polglase P. J., Smethurst P. J., O'Connel A. M., Caryle C. J. & Khana P. K., 2004. Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agricultural and Forest Meteorology 121: 167-182.

Kolendowicz L., 2002. Diel variation in air temperature, relative humidity and cooling power in Słowiński National Park. Badania Fizjograficzne nad Polską Zachodnią 53: 83-93.

Li H., Yan J., Yue X. & Wang M., 2008. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology 148: 490-503.

Mocek A., 1997. Współczesne gleby leśne. In: H. Piotrowska (ed.): Przyroda Słowińskiego Parku Narodowego. Bogucki Wydawnictwo Naukowe, Poznań-Gdańsk: 77-94.

Mungai D. N., Stigter C. J., Coulson C. L. & Ng'Ang'A J. K., 1998. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping in semi-arid Kenya. Theoretical and Applied Climatology 65: 63-78.

Pan H. L. & Mahrt L., 1987. Interaction between soil hydrology and boundary layer development. Boundary-Layer Meteorology 38: 185-202.

Paszyński J., Miara K. & Skoczek J., 1999. Wymiana energii między atmosferą a podłożem jako podstawa kartowania topoklimatycznego. Dokumentacja Geograficzna 14: 1-127.

Peters-Lidard C. D., Blackburn E., Liang X. & Wood E. F., 1998. The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. Journal of the Atmospheric Sciences 55: 1209-1224.

Piotrowska H., 1997a. Lasy. In: H. Piotrowska (ed.): Przyroda Słowińskiego Parku Narodowego. Bogucki Wydawnictwo Naukowe, Poznań-Gdańsk: 157-196.

Piotrowska H., 1997b. Roślinność wydm. In: H. Piotrowska (ed.): Przyroda Słowińskiego Parku Narodowego. Bogucki Wydawnictwo Naukowe, Poznań-Gdańsk: 197-227.

Rabski K., 1984. Eolian sands temperature conditions on the Łeba Bar. Sprawozdania PTPN 100: 170-173.

Subedi M. & Fullen M. A., 2009. Temporal changes in soil temperature at the Hilton Experimental Site, Shropshire, UK (1982-2006): Evidence of a warming trend?. Archives of Agronomy and Soil Science 55, 105-113.