A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity for glass-forming liquids
PDF

How to Cite

Monkos, K. (2012). A comparison of the activation energy of viscous flow for hen egg-white lysozyme obtained on the basis of different models of viscosity for glass-forming liquids. Current Topics in Biophysics, 34(1), 1–9. https://doi.org/10.2478/v10214-011-0001-6

Abstract

The paper presents the results of viscosity determinations on aqueous solutions of hen egg-white lysozyme at a wide range of concentrations and at temperatures ranging from 5°C to 55°C. On the basis of these measurements and different models of viscosity for glass-forming liquids, the activation energy of viscous flow for solutions and the studied protein, at different temperatures, was calculated. The analysis of the results obtained shows that the activation energy monotonically decreases with increasing temperature both for solutions and the studied protein. The numerical values of the activation energy for lysozyme, calculated on the basis of discussed models, are very similar in the range of temperatures from 5°C to 35°C.

https://doi.org/10.2478/v10214-011-0001-6
PDF

References

Angell C. A. (1988). Perspective on the glass transition. J. Phys. Chem. Solids 8, 863-871.

Avramov I. (1998). Viscosity of glassforming melts. J. Non-Cryst. Solids 238, 6-10.

Baranowska H. M., Olszewski K. J. (1996). The hydration of proteins in solutions by self-diffusion coefficients NMR study. Biochim. Biophys. Acta 1289, 312-314.

Bonincontro A., Cinelli S., Onori G., Stravato A. (2004). Dielectric behavior of lysozyme and ferricytochrome-c in water/ethylene-glycol solutions. Biophys. J. 86, 1118-1123.

Bourret E, Ratsimbazafy V, Maury L, Brossard C. (1994). Rheological behavior of saturated polyglycolysed glycerides. J. Pharm. Pharmacol. 46, 538-541.

Desbrieres J. (2002). Viscosity of semiflexible chitosan solutions: Influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules 3, 342-349.

Desbrieres J., Martinez C., Rinaudo M. (1996). Hydrophobic derivatives of chitosan: Characterization and rheological behavior. Int. J. Biol. Macromol. 19, 21-28.

de Paula RCM, Rodrigues JF. (1995). Composition and rheological properties of cashew tree gum, the exudates polysaccharide from Anacardium occidentale L. Carbohydr. Polym. 26, 177-181.

de Vasconcelos CL, de Azevedo FG, Pereira MR, Fonseca JLC. (2000). Viscosity-temperature-concentration relationship for starch-DMSO-water solutions. Carbohydr. Polym. 41, 181-184.

Diakova G., Goddard Y. A., Korb J. P., Bryant R. G. (2007). Changes in protein structure and dynamics as a function of hydration from H-1 second moments. J. Mag. Res. 189, 166-172.

Dreval V. E., Botvinnik G. O., Malkin A. Ya. (1973). Approach to generalization of concentration dependence of zero-shear viscosity in polymer solutions. J. Polym. Sci. 11, 1055-1076.

Durand A. (2007). Aqueous solutions of amphiphilic polysaccharides: Concentration and temperature effect on viscosity. Eur. Polym. J. 43, 1744-1753.

English N. J., Solomentsey G. Y., O'Brien P. (2009). Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. J. Chem. Phys. 131, 035106.

Gregory R. B., Gangoda M., Gilpin R. K., Su W. (1993). The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Biopolymers 33, 513-519.

Hadden J. M., Chapman D., Lee D. C. (1995). A comparison of infrared spectra of proteins in solution and crystalline forms. Biochim. Biophys. Acta 1248, 115-122.

Hayakawa E, Furuya K, Kuroda T, Moriyama M, Kondo A. (1991). Viscosity study on the self-association of doxorubicin in aqueous solution. Chem. Pharm. Bull. 39, 1282-1286.

Jauregui B, Muñoz ME, Santamaria A. (1995). Rheology of hydroxyethylated starch aqueous systems. Analysis of gel formation. Int. J. Biol. Macromol. 17, 49-54.

Kar F, Arslan N. (1999). Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity - molecular weight relationship. Carbohydr. Polym. 40, 277-284.

Knab J., Chen J. Y., Markelz A. (2006). Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys. J. 90, 2576-2581.

Knoben W, Besseling NAM, Cohen Stuart MA. (2007). Rheology of a reversible suprmolecular polymer studied by comparison of the effects of temperature and chain stoppers. J. Chem. Phys. 126, 024907.

Lefebvre J. (1982). Viscosity of concentrated protein solutions. Rheol. Acta 21, 620-625.

Lopez da Silva JA, Gonçalves MP, Rao MA. (1994). Influence of temperature on the dynamics and steady-shear rheology of pectin dispersions. Carbohydr. Polym. 23, 77-87.

Lushnikoy S. G., Svanidze A. V., Gvasaliya S. N., Torok G., Rosta L., Sashin I. L. (2009). Fractal properties of lysozyme: A neutron scattering study. Phys. Rev. E 79, 031913.

Maroufi B., Ranibar B., Khajeh K., Naderi-Manesh H., Yaghoubi H. (2008). Structural studies of hen egg-white lysozyme dimer. Comparison with monomer. Biochim. Biophys. Acta 1784, 1043-1049.

Miura N., Asaka N., Shinyashiki N., Mashimo S. (1994). Microwave dielectric study on bound water of globule proteins in aqueous solution. Biopolymers 34, 357-364.

Monkos K. (1996). Viscosity of bovine serum albumin aqueous solutions as a function of temperature and concentration. Int J Biol Macromol. 18, 61-68.

Monkos K. (1997). Concentration and temperature dependence of viscosity in lysozyme aqueous solutions. Biochim. Biophys. Acta 1339, 304-310.

Monkos K. (2008). Analysis of the viscosity-temperature-concentration dependence for dimeric bovine β-lactoglobulin aqueous solutions on the basis of the Vogel-Tammann-Fulcher's equation. Curr. Top. Biophys. 31, 16-24.

Monkos K., Turczynski B. (1991). Determination of the axial ratio of globular proteins in aqueous solution using viscometric measurements. Int. J. Biol. Macromol. 13, 341-344.

Pamies R., Hernández J. G., del Carmel López Martínez M., Garcia de la Torre J. (2008). Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid. Polym. Sci. 286, 1223-1231.

Pérez J., Zanotti J-M., Durand D. (1999). Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys. J. 77, 454-469.

Roth C. M., Neal B. L., Lenhoff A. M. (1996). Van der Waals interactions involving proteins. Biophys. J. 70, 977-987.

Smith L. J., Sutcliffe M. J., Redfield C., Dobson C. M. (1993). Structure of hen lysozyme in solution. J. Mol. Biol. 229, 930-944.

Squire P. G., Himmel M. E. (1979). Hydrodynamics and protein hydration. Arch. Biochem. Biophys. 196, 165-177.

Taborek P., Kleiman R. N., Bishop D. J. (1986). Power-law behavior in the viscosity of supercooled liquids. Phys. Rev. B 34, 1835-1840.

Takashima S. (2001). The structure and dipole moment of globular proteins in solution and crystalline states: use of NMR and X-ray databases for the numerical calculation of dipole moment. Biopolymers 58, 398-409.

Turula V. E., de Haseth J. A. (1996). Particle beam LC/FT-IR spectrometry studies of biopolymer. Conformations in reversed - phase HPLC separations: native globular proteins. Anal. Chem. 68, 629-638.

Vinogradov GV, Malkin AYa. (1980). Rheology of Polymers. Mir, Moscow, 1980.

Woods K. N. (2010). Solvent-induced backbone fluctuations and the collective librational dynamics of lysozyme studied by terahertz spectroscopy. Phys. Rev. E 81, 031915.

Yagi N., Ohta N., Matsuo T. (2009). Structure of amyloid fibrils of hen egg white lysozyme studied by microbeam X-ray diffraction. Int. J. Biol. Macromol. 45, 86-90.

Young E. G. (1963). Occurrence, classification, preparation and analysis of proteins. [In:] Florkin M., Stolz E. H. (eds.) Comprehensive biochemistry. Amsterdam, pp. 22.

Zhou H. X. (1995). Calculation of translational friction and intrinsic viscosity. Application to globular proteins. Biophys. J. 69, 2298-2303.

Zimmerman S. B., Minton A. P. (1993). Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 22, 27-65.