Abstract
The aim of the work was to determine the antioxidant potential of extracts from leaves of strawberry, blackcurrant and apple in relation to lipids contained in the erythrocyte membrane. The studies performed have shown that the substances used protect membrane lipids against oxidation, clearly reducing the level of free radicals in erythrocyte ghosts suspension. The antioxidant activity of the substances studied follows the sequence: strawberry leaves > apple leaves > blackcurrant leaves. The results of the research on the antioxidant activity when confronted with the contents of polyphenols in the extracts indicates that the antioxidant potentials of the extracts depend both on the quantity and kind of individual polyphenols; in particular, on the kind and quantity of quercetin derivatives that constitute over 60 % of all the phenolic compounds. Moreover, the high antioxidant activity of the extracts may be also due to other, nonphenolic substances that occur in leaves. The extracts exhibit very good properties as free radical scavenges, and can thus be used as cheap, easily available, natural antioxidants in the industries where natural antioxidants in the form of fruit extracts have been used for long.
References
Arora A. & Strasburg G. M. (1997). Development and validation of fluorescence spectroscopic assays to calculate antioxidant efficacy. J. Am. Oil Chem. Soc., 74, 1031-1040.
Atoui A. K, Abdelhak M. & Boskou G. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chem., 89(1), 27-36.
Bartosz G. (2003). Another face of oxygen, Warszawa PWN.
Beckman K. B. & Ames B. N. (1998). The free radical theory of aging matures. Physiol. Rev., 78(2), 546-581.
Bradford M. M. (1976). Rapid and sensitive method for quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.
Crippen Jr. D. D. & Morrison J. C. (1986). The effects of sun exposure on the phenolic content of cabernet sauvignon berries during development. Am. J. Enol. Vitic., 37(4), 243-247.
Dodge J. T., Mitchell C. & Hanahan D. J. (1963). The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem., 100, 119-130.
Droge W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev., 82(1), 47-95.
Ferrali M., C. Signorini C., Caciotti B., Sugherini L., Ciccoli L., Giachetti D. & Comporti M. (1997). Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 416, 123-129.
Gąsiorowski K., Szyba K., Brokos B., Kołaczyńska B., Jankowiak-Włodarczyk M. & Oszmiański J. (1997). Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett., 119, 37-46.
Gil M. I., Tomas-Barberan F. A., Hess-Pierce B., Halcroft D. M. & Kader A. A. (2000). Antioxidant activity of pomegrante juice and its relationship with phenolic composition and processing. J. Agric. Food Chem., 48(10), 4581-4589.
Kalt W., Forney C. F. & McDonald J. (1998). Changes of fruit phenolic composition and antioxidant capacity during storage. Hort. Science, 33, 469 (abstract).
Manach C., Scalbert A., Morand C., Rémésy C. & Jiménez L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 79(5), 727-747.
Middleton E., Kandaswamy C. & Theoharides T. C. (2000). The effect of plant flavonoids on mammalian cells, implications for inflammation, heart disease and cancer. Pharm. Rev., 52, 673-751.
Oszmiański J. & Wojdyło A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol., 221, 809-813.
Oszmiański J. & Wojdyło A. (2007). Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol., 224, 755-762.
Oszmiański J., Wolniak M., Wojdyło A. & Wawer I. (2008). Influence of apple puree preparation and storage on polyphenol contents and antioxidant activity. Food Chem., 107, 1473-1484.
Oszmiański J., Wojdyło A. & Kolniak J. (2009). Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice. J. Agric. Food Chem., 57(15), 7078-7085.
Proteggente A. R., Pannala A. S., Paganga G., Van Buren L., Wagner E., Wiseman S., Van de Put F., Dacombe C. & Rice-Evans C. A. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res., 36(2), 217-233.
Rice- Evans C. A., Miller N. J. & Paganga G. (1996). Structure - antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. Med., 20(7), 933-956.
Rice-Evans C. A., Miller N. J. & Paganga G. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159.
Semenistaya E. N & Larionov O. G. (2008). Characterization of the composition and antioxidant activity of plant extracts by HPLC with UV and amperometric detection. Pharm. Chem. J., 42(9), 43-48.
Skupień K. & Oszmiański J. (2004). Comparison of six cultivars of strawberries (fragaria x ananasa duch.) grown in northwest Poland. Eur. Food Res Technol., 219, 66-70.
Velioglu Y. S., Mazza G., Gao L. & Oomah B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric. Food Chem., 46, 411-3-4117.
Verlangieri A. J., Kapeghian J. C., el-Dean S. & Bush M. (1985). Fruit and vegetable consumption and cardiovascular mortality. Med. Hypoth., 16, 7-15.
Wang H., Cao G. & Prior R. L. (1996). Total antioxidant capacity of fruits. J. Agric. Food Chem. 44(3), 701-705.
Wang S. Y. & Lin H-S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem., 48(2), 140-146.
Zielinska M., Gulden M., Seibert H. (2003). Effects of quercetin and quercetin-3-O-glycosides on oxidative damage in rat C6 glioma cells. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol., 13(1), 47-53