The effect of aclarubicin (acl) on human erythrocytes
PDF

How to Cite

Witczak, P., & Marczak, A. (2012). The effect of aclarubicin (acl) on human erythrocytes. Current Topics in Biophysics, 34(1), 23–29. https://doi.org/10.2478/v10214-011-0004-3

Abstract

The present study examines the influence of aclarubicin (ACL) on human red blood cells with a focus on the generation of reactive oxygen species (ROS). A statistically significant increase in ROS levels was observed for all the tested concentrations of aclarubicin (1-20 nM). The depletion of catalase activity and elevated metHb content were also observed. On the other hand, changes in reduced glutathione (GSH) and total glutathione concentrations were not statistically significant. The presented results confirm important role of ROS in ACL cytotoxic activity.

https://doi.org/10.2478/v10214-011-0004-3
PDF

References

Aebi H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.

Akerboom, T. P. M., Sies, H., 1981. Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Methods Enzymol. 77: 373-382.

Bartosz G.: Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie. Wydawnictwo Naukowe PWN, Warszawa 2008

Bukowska B., Chajdys A., Duda W. & Duchnowicz P. (2000) Catalase activity in human erythrocytes: effect of phenoxyherbicides and their metabolites. Cell Biol. Int. 24: 10: 705-711.

Chenais B., Andriollo M., Guiraud P., Belhoussine R. & Jeannesson P. (2000) Oxidative stress involvement in chemically induced differentiation of K562 cells. Free Radical Biol. Med. 28: 18-27.

Chmiel A. & Grudziński S. (1998) Biotechnologia i Chemia Antybiotyków. Wydawnictwo Naukowe PWN, Warszawa 1998

Dudka J. (2006) Rola reaktywnych form tlenu i azotu w zaburzeniach komórkowej homeostazy wapnia i żelaza w kardiotoksyczności antracyklinowej. Post. Hig. Med. Dośw. (online) 60: 241-247.

Ellman G. (1959) Tissue sulphydryl groups. Arch. Biochem. Biophys. 32: 70-77.

Fedeli D., Tiano L., Gabbianelli R., Caulini G. C., Woźniak M. & Falcioni G. (2001) Hemoglobin components from trout (Salmo irideus); determination of their peroxidative activity. Comp. Biochem. Physiol. Part B 130: 559-564.

Gałecka E., Jacewicz R., Mrowicka M., Florkowski A. & Gałecki P. (2008) Enzymy antyoksydacyjne - budowa, właściwości, funkcje. Pol. Merk. Lek. 147: 266.

Grasso S., Scifo C., Cardile V., Gulino R. & Renis M. (2003) Adaptive response to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts. Exp. Biol. Med. 228: 491-498.

Gunther M. R. (2004) Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction. Free Rad. Biol. Med. 36: 1345-1354.

Hajji N., Mateos S., Pastor N., Dominguez I. & Cortem F. (2005) Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase. Mutat. Res. 583: 26-35.

Kania K., Zych A. & Jóźwiak Z. (2007) Involvement of reactive oxygen species in aclarubicin-induced death of human trisomic and diabetic fibroblasts. Toxicol. in Vitro 21: 1010-1019.

Khan S. N., Islam B., Yennamalli R., Zia Q., Subbarao N. & Khan A. U. (2008) Characterization of doxorubicin binding site and drug induced alteration in the functionally important structural state of oxyhemoglobin. J. Pharmaceutics Biomed. Anal 48: 1096-1104

Khan S.N & Khan A. U. (2008) An in silico approach to map the binding site of doxorubicin on hemoglobin. Bioinformation 2: 401-404.

Kłyszejko-Stefanowicz L: Ćwiczenia z biochemii. Wydawnictwo Naukowe PWN, Warszawa 2003

Łubgan D., Marczak A., Walczak M., Distel L. & Jóźwiak Z. (2006) Mechanizmy działania doksorubicyny (DOX) - obecny stan wiedzy. Przegląd Lek. 63(9): 782-788.

Marczak A., Makowska K., Witczak P. & Jóźwiak Z. (2009) Porównanie wpływu doksorubicyny i epirubicyny na wybrane parametry erytrocytów człowieka. Problemy Ter. Monit. 20: 175-186.

Oliński R. & Jurgowiak M. (1999) Rola reaktywnych form tlenu w procesach mutagenezy i karcynogenezy. Post. Biochem. 45: 50-58.

Richard D., Hollender P. & Chénais B. (2002) Involvement of reactive oxygen species in aclarubicin-induced differentiation and invasiveness of HL-60 leukemia cells. Int. J. Oncol. 21: 393-399.

Richard D., Morjani H. & Chenias B. (2002) Free radical production and labile iron pool decrease triggered by subtoxic concentration of aclarubicin in human leukemia cell lines. Leuk. Res. 26: 927-931.

Rogalska A., Koceva-Chyła A. & Jóźwiak Z. (2008) Aclarubicin-induced ROS generation and collapse of mitochondrial membrane potential in human cancer cell lines. Chem. Biol. Interact. 176: 58-70.

Rogalska A., Marczak A. & Jóźwiak Z. (2008) Aklarubicyna - alternatywa dla komórek opornych na antracykliny I generacji. Post. Biol. Kom. 1: 97-111.

Shinohara K & Tanaka KR (1980) The effects of adriamycin (doxorubicin HCl) on human red blood cells. Hemoglobin 4: 735-745.

Simunek T, Stérba M, Popelova O, Adamcová M, Hrdina R & Gersl V. (2009) Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep. 61: 154-171

Szuławska A. & Czyż M. (2006) Molekularne mechanizmy działania antracyklin. Post. Hig. Med. Dośw. (online) 60: 78-100.

Ścibior D. & Czeczot H. (2006) Katalaza - budowa, właściwości, funkcje. Post. Hig. Med. Dośw. (online) 60: 170-180.

Zatorska A. & Jóźwiak Z. (2002) Involvement of glutathione and glutathione-related enzymes in the protection of normal and trisomic human fibroblasts against daunorubicin. Cell Biol. Int. 26: 383-391.

Zweier J. L., Gianni L., Muindi J. & Myers C. E. (1986) Differences in O2 reduction by the iron complexes of adriamycin and daunomycin: the importance of the sidechain hydroxyl group. Biochim. Biophys. Acta 884: 326-336.