Peptides conformational changes of the erythrocyte membrane induced by organometallic tin compounds
PDF

How to Cite

Żyłka, R., Kupiec, J., & Przestalski, S. (2012). Peptides conformational changes of the erythrocyte membrane induced by organometallic tin compounds. Current Topics in Biophysics, 34(1), 31–35. https://doi.org/10.2478/v10214-011-0005-2

Abstract

The paper presents the results of a study on the effect of selected organic chlorides of tin on peptide conformations of erythrocyte ghosts from pig blood. The following compounds were used: dibutyltin dichloride (DBT), tributyltin chloride (TBT), diphenyltin dichloride (DPhT) and triphenyltin chloride (TPhT). Peptide conformation changes were determined on the basis of measurements done with the ATR FTIR technique. This method made it possible to measure the percent share of a peptide with specified conformation in the whole amount of the peptides in the membranes studied. The investigation showed that all the tin organic compounds studied cause a several-percent decrease in the quantities of both the peptides with the α-helix and turn conformation, and about a 20% increase in ghost peptides with β-sheet conformation. It seems that the changes observed can cause disturbances in the function of proteins and, consequently, the activity of the membrane; and this may be one of the aspects of the toxic properties of organotins.

https://doi.org/10.2478/v10214-011-0005-2
PDF

References

Alvarez J., Haris P. I., Lee D. C. & Chapman D. (1987) Conformational changes in concanavalin A associated with demetallization and α-methylmannose binding studied by Fourier transform infrared spectroscopy. Biochim. Biophys. Acta., 916, 5-12.

Antizar-Ladislao B. (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT) contaminated marine environment A review. Environ. Int,. 34, 292-308.

Baclayon M., Roos W. H., Wuite G. J. L. (2010) Sampling protein form and function with the atomic force microscope. Mol. Cell. Proteomics 9, 1678-1688.

Buck-Koehntop B. A., Porcelli F., Lewin J. L., Cramer C. J. & Veglia G. (2006) Biological chemistry of organotin compounds: Interactions and dealkylation by dithiols, J. Organomet. Chem., 691, 1748-1755.

Chicano J. J., Ortiz A., Teruel J. A. & Aranda F. J. (2001) Organotin compounds alter the physical organization of phosphatidylcholine membranes. Biochim. Biophys. Acta 1510, 330-341.

Craig P. J. (2003) Organometallic Compounds in the Environment. 2nd ed. Chichester, England; Wiley;

Dessailly B.H, Redfern O. C., Cuff A., Orengo C. A., (2009) Exploiting structural classifications for function prediction: towards a domain grammar for protein function Curr. Opin. Struct. Biol. 19, 349-356'

Dodge J. T., Mitchell C. & Hanahan D. J. (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys., 100, 119-130.

Garip S., Yapici E., Simsek Ozek N., Severcanc M., Severcan F. (2010) Evaluation and discrimination of simvastatin-induced structural alterations in proteins of different rat tissues by FTIR spectroscopy and neural network analysis. Analyst 135, 3233-3241.

Hoch M. (2001) Organotin compounds in the environment - an overview. Appl. Geochem., 16, 719-743.

Jackson M. & Mantsch H. H. (1993) Biomembrane structure from FT-IR spectroscopy. Spectrochim. Acta Rev., 15 53-69.

Kim S-H., Shin D. H., Choi I-G., Schulze-Gahmen U., Chen S., Kim R. (2003) Structure-based functional inference in structural genomics J. Struc. Funct. Gen. 4, 129-135.

Kleszczyńska H., Hładyszowski J., Pruchnik H. & Przestalski S. (1997) Erythrocyte hemolysis by organic tin and lead compounds. Z Naturforsh., 52c. 65-69.

Okubo T., Noguchi T. (2007) Selective detection of the structural changes upon photoreactions of several redox cofactors in photosystem II by means of light-induced ATR-FTIR difference spectroscopy. Spectrochim. Acta Part A 66 863-868.

Palaniappan Pl. Rm., Vijayasundaram V. (2008) Fourier transform infrared study of protein secondary structural changes in the muscle of Labeo rohita due to arsenic intoxication. Food Chem. Toxicol. 46 3534-3539.

Pellerito C., Nagy L., Pellerito L., Szorcsik A. (2006) Biological activity studies on organotin(IV)n+ complexes and parent compounds, J. Organomet. Chem., 691 1733-1747.

Pelton J. T. & McLean L. R. (2000) Spectroscopic Methods for Analysis of Protein Secondary Structure. Anal. Bioche.,. 277, 167-176.

Przestalski S., Kleszczyska H., Trela Z., Spiak Z., Zamarajeva M., Glazyrina N. & Gagelgans A. (2000) Direct or indirect influence of triphenyl-lead on activity of Na+/K+-ATPase. Appl. Organomet. Chem., 14, 432-437.

Rozycka-Roszak B. & Pruchnik H. (2001) The effect of phenyltin chlorides on the phase polymorphism of dipalmitoylphosphatidylcholine. Apel. Organomet. Chem., 15, 233-235.

Stridh H., Cotgreave I., Müller M., Orrenius S. & Gigliotti D. (2001) Organotin-induced caspase activation and apoptosis in human peripheral blood lymphocytes. Chem. Res. Toxicol., 14, 791-798.

Surewicz W. K. & Mantsch H. H. (1988) New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim. Biophys. Acta, 952, 115-130.

Watson J. D., Laskowski R. A., Thornton J. M. (2005) Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 15, 275-284.

Żyłka R., Kleszczyńska H., Kupiec J., Bonarska-Kujawa D., Hladyszowski J. & Przestalski S. (2009) Modification of Erythrocyte Membrane Hydration Induced by Organic Tin Compounds. Cel. Biol. Int. 33, 801-806.