Review - Flavins as photoreceptors of blue light and their spectroscopic properties
PDF

How to Cite

Grajek, H. (2012). Review - Flavins as photoreceptors of blue light and their spectroscopic properties. Current Topics in Biophysics, 34(1), 53–65. https://doi.org/10.2478/v10214-011-0008-z

Abstract

This review describes 1) the development of studies on flavin photoreceptors as blue light photoreceptors in many living organisms: their kinds and functions; 2) the studies on spectroscopic properties of flavins, both their dimers and monomers; 3) nonradiative excitation energy transport in the presence of monomers and fluorescent/nonflurescent FMN dimers (excitation traps). The existence equilibrated luminescent FMN centers, energy migration and excitation sink to FMN dimers are taken into account.
https://doi.org/10.2478/v10214-011-0008-z
PDF

References

Anderson S., Dragnea V., Masuda S., Ybe J., Moffat K. & Bauer C. (2005). Structure of a novel photoreceptor, the BLUdomain of AppA from Rhodobacter sphaeroides. Biochemistry, 44(22): 7998-8005.

Banerjee R. & Batschauer A. (2005). Plant blue-light receptors. Planta, 220, 498-502.

Beinert H. (1956). Spectral characteristics of flavins at the semiquinoid oxidation level. J. Am. Chem. Soc. 78(20), 5323-5328.

Berg P. A. W. & Visser A. W. G. (2001). Tracking molecular dynamics of flavoproteins with time-resolved fluorescence spectroscopy. [In:] Valeur B., Brochon J. C. (eds.) New trends in fluorescence spectroscopy. Applications to chemical and life sciences. Springer-Verlag Berlin Heidelberg, New York, pp. 457-485.

Berg P. A. W., Hoek A. & Visser A. W. G. (2004). Evidence for a novel mechanism of time-resolved flavin fluorescence depolarization in glutathione reductase. Biophysical Journal. 87, 2577-2586.

Bieger B., Essen L. O. & Oesterhelt D. (2003). Crystal structure of halophilic dodecin: a novel dodecameric flavin binding protein from Halobacterium salinarium. Structure, 11, 375-385.

Bojarski C. & Domsta J. (1971). Theory of the influence of concentration on the luminescence in solid solutions. Acta Phys. Acad. Sci. Hung., 30, 145-166.

Bojarski C. (1984). Influence of the reversible energy transfer on the donor fluorscence quantum yield in donot-acceptor systems. Z. Naturforsch. 39, 948-951.

Bojarski P., Grajek H., Żurkowska G., Kukliński B., Smyk B. & Drabent R. (1999). Excitation energy transport concentrated system of flavomononucleotide in polyvinyl alcohol films, J. Fluorescence 9, 391-396.

Bojarski P., Kułak L., Grajek H., Żurkowska G., Kamińska A., Kukliński B. & Bojarski C. (2003). Excitation energy transport and trapping in concentrated solid solutions of flavomononucleotide. Biophys. Biochim. Acta, 1619, 201-208.

Briggs W. R., Christie J. M. & Salomon M. (2001). Phototropins: a new family of flavin-binding blue light receptors in plants. Antioxid. Redox Signal, 3(5), 775-788.

Briggs W. R. & Olnej M. A. (2001). Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant. Physiol., 125, 85-88.

Bystra K. & Drabent R. (1982). Zmiany elektronowych widm flawin pod wpływem matrycy polimerowej. Zesz. nauk. ART. Olszt. Technologia Żywności, 17, 63-68.

Bystra K., Drabent R., Szubiakowska L. & Smyk B. (1983). Spectral properties of flavins in hydrophilic matrices. Spectrosc. Lett., 16(7), 513-530.

Bystra K. (1984). Badania spektralne flawinowych grup prostetycznych. Zag. Biofiz. Współcz., 9, 153-177.

Bystra-Mieloszyk K., Balter A. & Drabent R. (1985). Fluorescence Quenching for flavins interactiing with egg white riboflavin-bonding protein. Photochem and Photobiol., 4(2), 141-147.

Crosson S. & Moffat K. (2001). Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction. Proc. Natl. Acad. Sci.USA, 98, 6, 2995-3000.

Demarsy E. & Fankhauser C. (2009). Higher plants use LOV to perceive blue light.Current Opt. in Plant Biol. 12, 69-74

Devlin P. F. & Kay S. A. (1999). Cryptochromes - bringing the blues to circadian rhythms. Trends Cell Biol., 9, 8, 295-298.

Drabent R. & Białłowicz J. (1976). Types of electronic transitions responsible for riboflavin absorption. Bull. Acad. Pol. Sci., 24(11), 1055-1061.

Drabent R. (1977). Właściwości optyczne ryboflawiny w układzie modelującym struktury biologiczne. Zesz. nauk. ATR Olszt. Technologia Żywności, 11, 3-49.

Drabent R. (1979). Transition moments of riboflavin in the 300 nm region. Acta Phys. Pol., A55(3), 371-375.

Drabent R. & Laczko G. (1984). Delayed fluorescence of the flavomononucleotide complex. Acta Biochim.et Biophys. Acad. Sci. Hung. 19(3-4), 263-272.

Drabent R. Mieloszyk J. & Siódmiak J. (1984). Delayed fluorescence and fosfoerscence of the flavomononucleotide stabilized by poly(vinyl alcohol) matrix. Acta Biochim.et Biophys. Acad. Sci. Hung. 19(3-4), 259-264.

Durr H., Salomon M. & Rüdiger W. (2005). Chromophore exchange in the LOV2 domain of the plant photoreceptor phototropin1 from oat. Biochemistry, 44(8), 3050-3055.

Eaton W. A., Hofrichter J., Makinen M. W., Andersen R. D. & Ludwig M. L. (1975). Optical spectra and electronic structure of flavine mononucleotide in flavodoxin crystals. Biochemistry, 14, 10, 2146-2151.

Estabrook R. W., Shet M. S., Fisher C. W., Jenkins C. M. & Waterman M. R. (1996). The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain. Arch. Biochem. Biophys., 333, 1, 308-315.

Federov R., Schlichting I., Hartmann E., Domratcheva T., Fuhrmann M. & Hegemann P. (2003). Crystal struktures and molecular mechanism of a light-induced signaling switch: The Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys. J., 84, 2474-2482.

Flavins and Flavoproteins, (1966). Slater E.C (ed). Elsevier Publishing Company, Amsterdam-London-New York, B. B. A. Library-vol. 8.

Flavins and Flavoproteins, (1968). Yagi K.(eds.) The Proceedings of the 2nd Conference on Flavins and Flavoproteins. University of Tokyo Press, Tokyo.

Flavins and Flavoproteins. (1971). Kamin. H. (ed.) University Park Press, Baltimore, 3rd International Symposium.

Flavins and Flavoproteins. (1976). Singer T.P (ed.) Elsevier Scientific Publishing Company, 5th International Symposium.

Frąckowiak D. & Fiksiński K. (1976). Przekazywanie energii w jednostkach fotosyntetycznych. Post. Biochem., 22, 439-465.

Frąckowiak D., Zelent B., Malak H., Planner A., Cegielski R., Munger G. & Leblanc R. M. (1994). Fluorescence of aggregated forms of Chl a in various media, J. Photochem. Photobiol. A: Chem. 78, 49-55.

Frąckowiak D., Dudkowiak A., Ptak A., Malak H., Gryczyński I. & Zelent B. (1998). Fluorescence lifetimes of oriented green bacteria cells, cell fragments and oriented bacteriochlorophyll c molecules, J. Photochem. Photobiol. B: Biol. 44, 231-239.

Fukushima Y., Okajima K., Shibata Y., Ikeuchi M. & Ithon S. (2005). Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, TII0078, of Thermosynechococcus elongatus BP-1. Biochemistry, 44(13), 5149-5158.

Gabryś H. (1985). Chloroplast movement in Mougeotia induced by blue light pulses, Planta 166: 134-140.

Gabryś H., Walczak T. & Haupt W. (1985). Interaction between phytochrome and the blue light photoreceptor system in Mougeotia. Photochem. Phoptobiol., 42(6), 731-734.

Gabryś H. (1986). Dwa układy fotoreceptorowe sterujące ruchem chloroplastu w glonie Mougeotia. Post. Biol. Komórki, 13(1), 35-50.

Galland P. & Lipson E. D. (1985). Action spectra for phototropicbalance in Phyomyces blakesleeanus: dependence on reference wavelength and intensity range. Photochem. Photobiol., 41, 323-329.

Gauden M., Yremenko S., Laan W., van Stokkum I. H. M., Ihalainem J. A., van Grondelle R., Hellingwerf K. J. & Kennis J. T. M. (2005). Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry, 44(10): 3654-3662.

Gibson Q. H., Massey V. & Atherton N. M. (1962). The nature of compounds present in mixture of oxidized and reduced flavin mononucleotides. Biochem J., 85, 369-383.

Grabe B. 1974. Semi-empirical calculations on lumiflavin regarding electronic structure and spectra. Acta Chem. Scand., Ser.A, 28, 363-374.

Grajek H., Drabent R., Żurkowska G. & Bojarski C. (1984). Absorption of the flavin dimers. Biochim. Biophys. Acta, 801, 456-460.

Grajek H., Żurkowska G., Drabent R., & Bojarski C. (1986). The structure of the flavomononucleotide dimer. Biochim. Biophys. Acta 881, 241-247.

Grajek H., Żurkowska G., Bojarski C. & Drabent R. (1990). Investigations of the fluorescence concentration quenching of flavomononucleotide in glycerine-water solutions. Photochem. Photobiol., 51, 565-571.

Grajek H., Żurkowska G., Bojarski C. & Drabent R. (1992) The influence of fluorescence concentration quenching on the emission anisotropy of flavins in glycerine-water solutions. Photochem. Photobiol., 55, 381-387.

Grajek H., Żurkowska G., Bojarski P., Kukliński B., Smyk B., Drabent R. & Bojarski C. (1998). Spectroscopic manifestations of flavomononucleotide dimers in polyvinyl alcohol films. Biochim. Biophys. Acta, 1384, 253-267.

Grajek H., Żurkowska G., Drabent R. & Bojarski C. (2001). The effect of temperature and concentration on the aggregation of flavomononucleoyide iu aqueous solutions. Asian J. Spectroscopy, 2, 49-55.

Grajek H. (2003). The effect of temperature on FMN absorption spectra in rigid poly(vinyl alcohol) matrics. Biochim. Biophys. Acta, 1620, 133-138.

Grajek H., Żurkowska G., & Kuśba J. (2005). Influence of diffusion on nonradiative energy transfer between FMN molecules in aqueous solutions. Biochim. Biophys. Acta, 80(2), 145-155.

Grajek H. (2007). Nonradiative rxcitation energy transfer processes between monomeric and fluorescent dimmers of flavin mononucleotide (FMN) in rigid systems. Rozprawy i monografie. Wyd.UWM, 119, 1-159.

Grajek H., Liwo A., Wiczk W. & Żurkowska G. (2007a). Resolution of the excitation- emission spectra of FMN in rigid poly(vinyl alcohol) matrices. J. Photochem. Photobiol. B: Biol., 86, 193-198.

Grajek H., Gryczyński I., Bojarski P., Gryczyński Z., Bharill S. & Kułak L. (2007b) Flavin mnononucleotide fluorescence intensity decay in concentrated aques solutions. Chem. Phys. Lett. 439, 151-156.

Gruszecki W. I., Gagoś M. & Kernen P. (2002). Polyene antibiotic amphotericin B in monomolecular layers: spectrophotometric and scanning force microscopic analysis. FEBS Lett., 524, 92-96.

Gruszecki W. I., Gagoś M. & Hereć M. (2003a). Dimers of polyene antibiotic amphotericin B detected by means of fluorescence spectroscopy: molecular organization in solution and in lipid membranes. J. Photochem. Photobiol. B: Biol., 69, 49-57.

Gruszecki W. I., Gagoś M., Hereć M. & Kernen P. (2003b). Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell. Mol. Biolo. Lett., 8, 161-170.

Guo H., Duong H., Ma N. & Lin C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent posttranscriptional mechanism. Plant J, 19(3), 279-287.

Guo F., Chang B. H. & Rizzo C. J. (2002). An N1-hydrogen bonding model for flavin coenzyme. Bioorg. Med. Chem. Lett., 12, 151-154.

Harders H., Förster S., Voelter W. & Bacher A. (1974). Problems in electronic state assignment based on circular dichroism. Optical activity of flavines and 8-substituted lumazines. Biochemistry, 13(16), 3360-3364.

Haupt W., Wagner G. (1984). Membranes and Sensory Transduction [In:]. G. Colombeti, & Lenci F. (eds.). Plenum Press, New York, pp. 331-375.

Heelis P. F., Parsons B J., Phillips G. O. & McKellar J. F. (1978). A laser flash photolysis study of the nature of flavin mononucleotide triplet states and the reactions of the neutral form with amino acids. Photochem. Photobiol., 28, 169-173.

Heelis P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chem. Soc. Rev. 11(1), 15-39.

Jarillo J. A., Gabryś H., Capel J., Alonso J. M., Ecker J. R. & Cashmore A. R. (2001). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature, 410, 952-954.

Johansson L. B. A., Davidson A., Lindblom G. & Naqvi K. R. (1979). Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy. Biochemistry, 18(19), 4251-4253.

Kainosho M. & Kyogoku Y. (1972). High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin-adenine dinucleotide and its conformation in aqueous solution. Biochemistry, 11(5), 741-752.

Kasahara M., Swartz T. E., Olney M. A., Onodera A., Mochizuki N., Fukuzawa H., Asamizu E., Tabata S., Kanegae H., Takano M., Christie J. M., Nagatani A. & Briggs W. R. (2002). Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol., 192(2), 762-773.

Kautsky H. & de Bruijn H. (1931). Die Aufklärung der Photoluminescenztilgung fluorescierender Systeme durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung. Naturwiss.,19, 1043-1052.

Kitizing K., Fitzpatrick T. B., Wilken C., Sawa J., Bourenkov G. P., Macheroux P. & Clausen T. (2005). The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of old yellow enzymes. JBC, 280, 27904-27913.

Kottke T., Heberle J., Hehn D., Dick B. & Hegemann P. (2003). Phot-LOV1: Photocycle of a blue-light receptor domain from the green Alga Chlamydomonas reinhardtii. Biophys. J., 84, 1192-1201.

Kowallik W. (1967). Action spectrum for an enhancement of endogenous respiration by light in Chlorella. Plant. Physiol., 42, 672-676.

Kowallik U. & Kowallik W. (1969). Eine wellenlängenabhängige Atmungssteigerung während der Photosythese von Chlorella. Planta, 84, 141-157.

Kozioł J. (1966). Studies on flavins in organic solvents-II. Photodecomposition of riboflavin in the presence of oxygen. Photochem. Photobiol., 5, 55-62.

Kozioł J. (1969). Studies on flavins in organic silvents-III. Spectral behaviour of lumiflavin. Photochem. Photobiol., 9. 45-53.

Kraft B. J., Masuda S., Kikuchi J., Dragnea V., Tollin G., Zaleski J. M. & Bauer C. E. (2003). Spectroscopic and mutational analysis of the blue-light fotoreceptor AppA: A novel photocycle involving flavin stacking with an aromatic amino acid. Biochemistry, 42, 6726-6734.

Kuhn R., Weygand F. (1934). Synthese des 9-Methyl-iso-alloxazins. Ber. Dtsch. Chem. Ges., 67, 1409-1412.

Kułak L. & Bojarski C. (1995). Forward and reverse electronic energy transport and trapping in solution. I. Theory. Chem. Physics, 191, 43-66.

Lenci F., Colombetti G. & Häder D. P. (1983). Role of flavin quenchers and inhibitors in the sensory transduction of negative phototaxis in the flagellate, Euglena gracilis. Curren Microbiol., 9, 285-290.

Lin C., Yang H., Guo H., Mockler T., Chen J. & Cashmore A. R. (1998). Enhancement of blue- light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Plant Biol., 95, 5, 2686-2690.

Lin C. (2000). Plant blue-light receptors. Trends Plant Sci., 5, 8, 337-342.

Lin C. & Todo T. (2005). The cryptochromes. Genome Biol, 6(5), 220-226.

Liu B. Liu H., Zhong D. & Lin. C. (2010). Searching for a photocycle of the cryptochrome photoreceptors. Current Option in Plant Biuol., 13, 578-586.

Löser G. & Schäfer F. (1986). Are there several photoreceptors involved in phototropism of Phyomyces blakesleeanus? Kinetic studies of dichromatic irradiation, Photochem. Photobiol. 43(2), 195-204.

Lu C. Y. & Liu Y. Y. (2002). Electron transfer oxidation of tryptohan and tyrosine by triplet states and oxidized radicals of flavin sensitizers: a laser flash photolysis study. Biochim. Biophys. Acta, 1571, 71-76.

Masuda S. & Bauer C. E. (2002). AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell, 110, 613-623.

Mieloszyk K., Drabent R. & Mieloszyk J. (1989). Badania oddziaływania flawin z indolami metodami fluorescencyjnymi. Acta Acad. Agricult. Techn. Olst., Technologia Alimentorum, 23, 152-157.

Miura R., Setoyama C., Nishina Y., Shiga K., Miyahara I., Mizutani H. & Hirotsu K. (2001). Porcine kidney d-amino acid oxidase: the three-dimensional structure and its catalytic mechanism based on the enzyme-substrate complex model. J. Mol. Catal., B Enzym., 12, 43-52.

Miura T., Maeda K. & Arai T. (2003). Effect of Coulomb interaction on the dynamics of the radical pair in the system of flavin mononucleotide and hen egg-white lysozyme (HEWL) studied by a magnetic field effect. J. Phys. Chem. B. 107, 6474-6478.

Muñoz M. A., Carmona C., Hidalgo J., Guardado P. & Balón M. (1995). Molecular associations of flavins with betacarbolines and related indoles. Bioorg. Med. Chem., 3(1), 41-47.

Muralidhara B. K. & Wittung-Stafshede P. (2003). Can cofactor-binding sites in proteins be flexible? Desulfovibrio desulfuricans. flavodoxin binds FMN dimer. Biochemisrty, 42, 13074-13080.

Müller F., Mayhew S. G. & Massey V. (1973). On the effect of temperature on the absorption spectra of free and protein-bound flavines. Biochemistry, 12, 4654-4662.

Müller F. (1981). Spectroscopy and photochemistry of flavins and flavoproteins. Photochem. Photobiol., 34, 753-759.

Nakasako M., Matsuoka D., Zikihara K. & Tokutomi S. (2005). Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein. FEBS Lett., 579(5), 1067-1071.

Narayanasami R., Horowitz P. M. & Master B. S. S. (1995). Flavin-binding and protein structural integrity studien on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domains. Arch. Biochem. Biophys., 316, 1, 267-274.

Ninnemann H. (1980). Blue light photoreceptors, Bio Science 30. 166-170.

Nowicki M., Susla B., Planner A. & Frąckowiak D. (1999). The texture of stretched and unstretched polymer films with and without embedded biological matherials. Spectrosc. Lett., 32(4), 629-637.

Partch C. L., Clarkson M. W., Ozgur S., Lee A. L. & Sancar A. (2005). Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry, 44(10), 3795-805.

Penzer G. R. & Radda G. K. (1976). The chemistry and biological functions of isoalloxazines (flavines). Quart. Rev.(London), 21, 43-65.

Presti D., Hsu W. J. & Delbrück M. (1977). Phototropism in Phyomyces mutants lacking β-catotene. Photochem. Photobiol., 26, 403-405.

Quiñones M. A. & Aparicio P. J. (1990). Flavin type action spectrum of nitrate utilization by Monoraphidium braunii. Photochem. Photobiol. 51, 689-692.

Sakai T., Kagawa T., Kasahara M., Swartz T. E., Christie J. M., Briggs W. R., Wada M. & Okada K. (2001). Arabidopsis nph1 and nph1: Blue light receptors that mediate both phototropism and chloroplast relocation. PNAS, 98(12), 6969-6974.

Salomon M., Chistie J. M., Knieb E., Lempert U. & Briggs W. R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry, 39, 9401-9410.

Salomon M., Lempert U. & Rüdiger W. (2004). Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain. FEBS Lett., 572(1-3), 8-10.

Sarma R. H., Dannies P. & Kaplan N. O. (1968). Investigations of inter- and interamolecular interactions in flavin-adenine dinucleotide by proton magnetic resonance. Biochemistry, 7(12), 4359-4367.

Schmidt W. (1984). The study of basic photochemical and photophysical properties of membrane-bound flavins: The indispensible prerequisite for the elucidation of primary physiological blue light action. [In:] The blue light effects in biological systems. Senger H. (ed.) Springer-Verlag, Berlin-Heidelberg, New York, pp. 81-94.

Schüttrigkeit T. A., Kompa C. K., Salomon M., Rüdiger W. & Michel-Beyerle M. E. (2003). Primary photophysics of the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa. Chem. Phys., 294, 501-508.

Scola-Nagelschneider G. & Hemmerich P. (1972). Circular dichroism, self interaction and side chain conformation of riboflavin and riboflavin analogues. Z. Naturforsch., 27b, 1044-1046.

Siódmiak B. & Drabent R. (1973). Spectral investigations of riboflavine phototransformation in anisotropic medium. A44(5), 659-669.

Siódmiak J. & Frąckowiak D. (1972). Polarization of fluorescence of riboflavin in anisotropic medium. Photochem. Pchotobiol., 16:, 73-182.

Smyk B. & Grajek H. (2001). Conformation of FMN dimer obtained by molecular modelling methods. Current Topics in Biophys. 25(2), 81-84.

Song P. S. (1969a). Electronic structures and spectra of flavins: an improwed Pariser-Parr-Pople MO and semiempirical unrestricted Hartree-Fock Computations. Ann. N. Y. Acad. Sci., 158. 410-423.

Song P. S. (1969b). Theoretical considerations of the electronic spectra of methyl flavins. Int. J. Quant. Chem., 3, 303-316.

Song P. S. (1971). Chemistry of flavins in their excited states. [In:] Kamin H. (ed.). Flavins and Flavoproteins, Third International Symposium,. University Park Press, Baltimore. pp. 37-61.

Song P. S., Moore T. A. & Kurtin W. E. (1972a) 1. Molecular luminescence studies of flavins, II Interactions involving the excited states. Z. Naturforsch. 27, 1011-1015.

Stryer L. (1995) [In:] Freeman W. H. & Co (eds.) Biochemistry, New York.

Sujak A., Okulski W. & Gruszecki W. I. (2000). Organisation of xanthophyll pigments lutein and zeaxanthin in lipid membranes formed with dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta, 1509, 255-263.

Sun M., Moore T. A. & Song P. S. (1972). Molecular luminescence studies of flavins. I. The excited states of flavins. J. Am. Chem. Soc., 94(5), 1730-1740.

Sun M. & Song P. S. (1973). Excoted states a reactivity of 5_Deazaflavine. Comparative studies with flavine. Biochemistry, 12, 4663-4669.

Swartz T. E., Corchnoy S. B., Christie J. M., Lewis J. W., Szundi I., Briggs W. R. & Bogomolni R. A. (2001). The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J. Biol. Biochem., 276(39), 36493-36500.

Tollin G. (1968). Molecular complexes of flavins. [In:] Pullman B.(ed.) Molecular associations in biology. Academic Press, New York and London, pp. 393-409.

Tsentalovich Y. P., Lopez J. J., Hore P. J. & Tagdeev R. Z. (2003). Mechanisms of reactions of flavin mononucleotide triplet with aromatic amino acids. Spectrochimica Acta A, 58, 2043-2050.

Turck F., Fornara F. & Coupland G. (2008). Regulation and identity of florigen: flowering locust moves center stage. Annu Rev. Plant Biol. 59, 573-594.

Tyagi A., Penzkofer A., Mathes T. & Hegemann P. (2010). Photophysical characterisation and phot—cycle dynamics of LOV1-His domain of phototropin from Chlamydomonas reinhardtii with roseoflavin monophosphate cofactor, J. Photochem. Photobiol B: Biology, 101, 76-88.

Ulbrych K. (1979). Kompleksy z przeniesieniem ładunku ryboflawina - tryptofan i ryboflawina - hydrochinon w roztworze wodnym. Zesz. nauk. ART. Olszt. Technologia Żywności, 15, 3-14.

Ulbrych K. & Siódmiak J. (1982). Wygaszanie fluorescencji ryboflawiny przez hydrochinion w roztworach wodnych. Zesz. Nauk. ART. Olszt. Technologia Żywności, 17, 55-61.

Visser A. J. W. G., Ommen G. J., Ark G., Müller F. & Voorst J. D. W. (1974). Laser photolysis of 3-metyllumiflavin. Photochem. Photobiol., 20, 227-232.

Visser A. J. W. G. (1984). Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem. Photobiol. 40(6), 703-706.

Walczak T., Gabryś H. & Haupt W. (1984). Flavin-mediated weak-light chloroplast movement in Mougeotia, [In:] Senger H. (ed.) Blue Light Effect in Biological Systems, Springer-Verlag, Berlin - Heidelberg, pp. 454-459.

Weber G. (1948). The quenching of fluorescence in liquids by complex formation. Determination of the mean life of the complex. Trans. Faraday Soc., 44, 185-189

Whitelam G. (1995). A green light for cryptochrome research. Curr. Biol., 5(12), 1351-1353.

Zhu H. & Green C. B. (2001). A putative flavin electron transport pathway is differentially utilized in Xenopus CRY1 and CRY2. Curr. Biol., 11(24), 1945-1949.

Zirak P., Penzkofer A. Hegemann P. & Mathes T. (2007). Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides. Chem. Phys. 355, 15-27.

Zurzycki J. (1962) The action spectrum for the light depended movements of chloroplasts in Lemna trisulca L. Botanic. Pol. 31, 3, 489-538.

Zurzycki J. (1975). Rola błon w procesie fotorecepcji. Post. Biol. Komórki, 2(1), 61-85.

Żurkowska G., Grajek H. & Bojarski C. (1996). Effect of concentration and excitation wavelength on fluorescent spectra of flavomononucletide in polyvinyl alcohol films, Current Topics in Biophys. 20(2), 134-138.