Abstract
A long-term eustatic cycle (fall and subsequent rise of the global sea level) embraced the late Silurian-Middle Devonian time interval. Potentially, these sea-level changes could drive global biodiversity. The stratigraphic ranges of 204 bivalve genera and 279 gastropod genera included into the famous Sepkoski database allow reconstructing changes in the total diversity and the number of originations and extinctions of these important groups of marine benthic macro- -invertebrates during this interval. None of the recorded parameters coincided with the long-term global sea-level cycle. It cannot be not excluded, however, that the global sea-level changes did not affect the regions favourable for bivalve and gastropod radiation because of regional tectonic mechanisms; neither can it be excluded that the eustatic control persisted together with many other extrinsic and intrinsic controls. Interestingly, the generic diversity of gastropods increased together with a cooling trend, and vice versa. Additionally, the Ludlow, Eifelian, and Givetian biotic crises affected, probably, both fossil groups under study. There was also a coincidence of the relatively high bivalve generic diversity, initial radiation of gastropods and the entire biota, and the diversification of brachiopods with the Early Devonian global sea-level lowstand, and this may be interpreted as evidence of a certain eustatic control on the marine biodiversity.
References
Aberhan, M. & Kiessling, W., 2012. Phanerozoic marine biodiversity - a fresh look at data, methods, patterns and processes. [In:] J.A. Talent (Ed.): Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Dordrecht, 3-22. DOI: https://www.doi.org/10.1007/978-90-481-3428-1_1
Alroy, J., Aberhan, M., Bottjer, D.J., Foote, M., Fürsich, F.T., Harries, P.J., Hendy, A.J.W., Holland, S.M., Ivany, L.C., Kiessling, W., Kosnik, M.A., Marshall, C.R., McGowan, A.J., Miller, A.I., Olszewski, T.D., Patzkowsky, M.E., Peters, S.E., Viller, L., Wagner, P.J., Bonuso, N., Borkow, P.S., Brenneis, B., Clapham, M.E., Fall, L.M., Ferguson, C.A., Hanson, V.L., Krug, A.Z., Layou, K.M., Leckey, E.H., Nürnberg, S., Powers, C.M., Sessa, J.A., Simpson, C., Tomašových, A. & Visaggi, C.C., 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97-100. DOI: https://www.doi.org/10.1126/science.1156963
Baird, G.C., Zambito IV, J.J. & Brett, C.E., 2012. Genesis of unusual lithologies associated with the Late Middle Devonian Taghanic biocrisis in the type Taghanic succession of New York State and Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology 367/368, 121-136. DOI: https://www.doi.org/10.1016/j.palaeo.2011.11.010
Bambach, R.K., 2006. Phanerozoic biodiversity and mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127-155. DOI: https://www.doi.org/10.1146/annurev.earth.33.092203.122654
Benton, M.J., 1995. Diversification and extinction in the history of life. Science 268, 52-58. DOI: https://www.doi.org/10.1126/science.7701342
Benton, M.J., 2001. Biodiversity on land and in the sea. Geological Journal 36, 211-230. DOI: https://www.doi.org/10.1002/gj.877
Benton, M.J. & Emerson, B.C., 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50, 23-40. DOI: https://www.doi.org/10.1111/j.1475-4983.2006.00612.x
Blodgett, R.B., Rohr, D.M. & Boucot, A.J., 1990. Early and Middle Devonian gastropod biogeography. [In:] W.S. McKerrow & C.R. Scotese (Eds): Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir 12, 277-284. DOI: https://www.doi.org/10.1144/GSL.MEM.1990.012.01.26
Calner, M., 2005a. Silurian carbonate platforms and extinction events - ecosystem changes exemplified from Gotland, Sweden. Facies 51, 584-591. DOI: https://www.doi.org/10.1007/s10347-005-0050-0
Calner, M., 2005b. A Late Silurian extinction event and anachronistic period. Geology 33, 305-308. DOI: https://www.doi.org/10.1130/G21185.1
Catuneanu, O., 2006. Principles of sequence stratigraphy. Elsevier, Amsterdam, 375 pp.
Conrad, C.P. & Husson, L., 2009. Influence of dynamic topography on sea level and its rate of change. Lithosphere 1, 110-120. DOI: https://www.doi.org/10.1130/L32.1
Curry, G.B. & Brunton, C.H.C., 2007. Stratigraphic distribution of brachiopods. [In:] P.A. Selden (Ed.): Treatiseon invertebrate paleontology 6-H. Brachiopoda. Revised. Geological Society of America, Boulder/University of Kansas, Lawrence, 2901-3081.
Foote, M., 2003. Origination and extinction through the Phanerozoic - a new approach. Journal of Geology 111, 125-148. DOI: https://www.doi.org/10.1086/345841
Foote, M., 2007. Extinction and quiescence in marine animal genera. Paleobiology 33, 261-272. DOI: https://www.doi.org/10.1666/06068.1
Forney, G.G., Boucot, A.J. & Rohr, D.M., 1981. Silurian and Lower Devonian zoogeography of selected moluscan genera. [In:] J. Gray, A.J. Boucot & W.B.N. Berry (Eds): Communities of the past. Hutchinson Ross, Stroudsberg, 119-164.
Frýda, J., 2012. Phylogeny of Palaeozoic gastropods Inferred from their ontogeny. [In:] J.A. Talent (Ed.): Earth and life - global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Dordrecht, 395-435. DOI: https://www.doi.org/10.1007/978-90-481-3428-1_12
Hallam, A. & Wignall, P.B., 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford, 320 pp.
Hallam, A. & Wignall, P.B., 1999. Mass extinctions and sea-level changes. Earth-Science Reviews 48, 217-250. DOI: https://www.doi.org/10.1016/S0012-8252(99)00055-0
Haq, B.U. & Al-Qahtani, A.M., 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10, 127-160. DOI: https://www.doi.org/10.2113/geoarabia1002127
Haq, B.U. & Schutter, S.R., 2008. A chronology of Paleozoic sea-level changes. Science 322, 64-68. DOI: https://www.doi.org/10.1126/science.1161648
Heildelberger, D., 2001. Mitteldevonische (Givetische) Gastropoden (Mollusca) aus der Lahnmuld (südliches Rheinisches Schiefergebirge). Geologische Abhandlungen Hessen 106, 291 pp.
House, M.R., 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 5-25. DOI: https://www.doi.org/10.1016/S0031-0182(01)00471-0
Jeppson, L., Talent, J.A., Mawson, R., Andrew, A., Corradini, C., Simpson, A.J., Wigforss-Lange, J. & Schönlaub, H.P., 2012. Late Ludfordian correlations and the Lau Event. [In:] J.A. Talent (Ed.): Earth and life – global biodiversity, xxtinction intervals and biogeographic perturbations through time. Springer, Dordrecht, 653-675. DOI: https://www.doi.org/10.1007/978-90-481-3428-1_21
Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morow, J.R., Day, J. & Weddige, K., 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599-609. DOI: https://www.doi.org/10.1016/j.epsl.2009.05.028
Johnson, M.E., 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF 128, 115-121. DOI: https://www.doi.org/10.1080/11035890601282115
Johnson, M.E., 2010. Tracking Silurian eustasy: alignment of empirical evidence or pursuit of deductive reasoning? Palaeogeography, Palaeoclimatology, Palaeoecology 296, 276-284. DOI: https://www.doi.org/10.1016/j.palaeo.2009.11.024
Jones, R.W., 2011. Applications of palaeontology - techniquesand case studies. Cambridge University Press, Cambridge, 406 pp.
Kříž, J., Degardin, J.M., Ferretti, A., Hansch, W., Gutiérrez Marco, J.C., Paris, F., Piçarra-D-Almeida, J.M., Robardet, M., Schönlaub, H.P. & Serpagli, E., 2003. Silurian stratigraphy and paleogeography of Gondwanan and Perunican Europe. [In:] E. Landing & M.E. Johnson (Eds): Silurian lands and seas - paleogeography outside of Laurentia. New York State Museum Bulletin 493, 105-178.
Lovell, B., 2010. A pulse in the planet: regional control of high-frequency changes in relative sea level by mantle convection. Journal of the Geological Society, London 167, 637-648. DOI: https://www.doi.org/10.1144/0016-76492009-127
McGhee, G.R., 1996. The Late Devonian mass extinction – the Frasnian-Famennian crisis. Columbia University Press, New York, 303 pp.
McRoberts, C.A. & Aberhan, M., 1997. Marine diversity and sea-level changes: numerical tests for association using Early Jurassic bivalves. International Journal of Earth Sciences 86, 160-167. DOI: https://www.doi.org/10.1007/s005310050128
Menning, M., Alekseev, A.S., Chuvashov, B.I., Davydov, V.I., Devuyst, F.-X., Forke, H.C., Grunt, T.A., Hance, L., Heckel, P.H., Izokh, N.G., Jin, Y.-G., Jones, P.J., Kot lyar, G.V., Kozur, H.W., Nemyrovska, T.I., Schneider, J.W., Wang, X.-D., Weddige, K., Weyer, D. & Work, D.M., 2006. Global time scale and regional stratigraphic reference scales of central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology 240, 318-372. DOI: https://www.doi.org/10.1016/j.palaeo.2006.03.058
Moucha, R., Forte, A.M., Mitrovica, J.X., Rowley, D.B., Quere, S., Simons, N.A. & Grand, S.P., 2008. Dynamic topography and long-term sea-level variations: there is no such thing as a stable continental platform. Earth and Planetary Science Letters 271, 101-108. DOI: https://www.doi.org/10.1016/j.epsl.2008.03.056
Newell, N.D., 1967. Revolutions in the history of life. Geological Society of America Special Paper 89, 63-91. DOI: https://www.doi.org/10.1130/SPE89-p63
Ogg, J.G., Ogg, G. & Gradstein, F.M., 2008. The concise geologic time scale. Cambridge University Press, Cambridge, 177 pp.
Peters, S.E. & Foote, M., 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27, 583-601. DOI: https://www.doi.org/10.1666/0094-8373(2001)027<0583:BITPAR>2.0.CO;2
Peters, S.E. & Heim, N.A., 2011. Stratigraphic distribution of marine fossils in North America. Geology 39, 259-262. DOI: https://www.doi.org/10.1130/G31442.1
Purdy, E.G., 2008. Comparison of taxonomic diversity, strontium isotope and sea-level patterns. International Journal of Earth Sciences 97, 651-664. DOI: https://www.doi.org/10.1007/s00531-007-0177-z
Racki, G., 2005. Towards understanding Late Devonian global events: few answers, many questions. [In:] D.J. Over, J.R. Morrow & P.B. Wignall (Eds): Understanding Late Devonian and Permian-Triassic biotic and climatic events - towards an integrated approach. Elsevier, Amsterdam, 5-36. DOI: https://www.doi.org/10.1016/S0920-5446(05)80002-0
Ruban, D.A., 2007. Jurassic transgressions and regressions in the Caucasus (northern Neotethys Ocean) and their influences on the marine biodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 422-436. DOI: https://www.doi.org/10.1016/j.palaeo.2007.04.008
Ruban, D.A., 2010a. Do new reconstructions clarify the relationships between the Phanerozoic diversity dynamics of marine invertebrates and long-term eustatic trends? Annales de Paléontologie 96, 51-59. DOI: https://www.doi.org/10.1016/j.annpal.2010.08.001
Ruban, D.A., 2010b. Palaeoenvironmental setting (glaciations, sea level, and plate tectonics) of Palaeozoic major radiations in the marine realm. Annales de Paléontologie 96, 143-158. DOI: https://www.doi.org/10.1016/j.annpal.2011.05.004
Ruban, D.A., 2011a. Do outdated palaeontological data produce just a noise? An assessment of the Middle Devonian-Mississippian biodiversity dynamics in central Asia on the basis of Soviet-time compilations. Geologos 17, 29-47. DOI: https://www.doi.org/10.2478/v10118-011-0003-8
Ruban, D.A., 2011b. Lochkovian (earliest Devonian) transgressions and regressions along the “Tethyan” margin of Gondwana: a review of lithostratigraphical data. Gondwana Research 20, 739-744. DOI: https://www.doi.org/10.1016/j.gr.2011.03.010
Ruban, D.A., 2012. Reply to “Comment: Taxonomic diversity structure of Silurian crinoids: Stability versus dynamism” by S.K. Donovan. Annales de Paléontologie 98, 317-320. DOI: https://www.doi.org/10.1016/j.annpal.2012.10001
Ruban, D.A. & van Loon, A.J., 2008. Possible pitfalls in the procedure for paleobiodiversity-dynamics analysis. Geologos 14, 37-50.
Ruban, D.A., Zorina, S.O., Conrad, C. P. & Afanasieva, N.I., 2012. In quest of Paleocene global-scale transgressions and regressions: constraints from a synthesis of regional trends. Proceedings of the Geologists’ Associations 123, 7-18. DOI: https://www.doi.org/10.1016/j.pgeola.2011.08.003
Sandoval, J., O’Dogherty, L. & Guex, J., 2001a. Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations. Palaios 16, 311-335. DOI: https://www.doi.org/10.1669/0883-1351(2001)016<0311:EROJAI>2.0.CO;2
Sepkoski, J.J., 1993. Ten years in the library: New data confirm paleontological patterns. Paleobiology 19, 43-51. DOI: https://www.doi.org/10.1017/S0094837300012306
Sepkoski, J.J., Jr., 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363, 560 pp.
Sepkoski, J.J., Bambach, R.K., Raup, D.M. & Valentine, J.W., 1981. Phanerozoic marine diversity and fossil record. Nature 293, 435-437. DOI: https://www.doi.org/10.1038/293435a0
Smith, A.B. & McGowan, A.J., 2011. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. [In:] A.J. McGowan & A.B. Smith (Eds): Comparing the geological and fossil records - implications for biodiversity studies. Geological Society, London, Special Publications 358, 1-7. DOI: https://www.doi.org/10.1144/SP358.1
Stanley, S.M., 2007. An analysis of the history of marine animal diversity. Paleobiology 33 (sp6), 1-55. DOI: https://www.doi.org/10.1666/06020.1
Veeken, P.C.H., 2006. Seismic stratigraphy, basin analysis and reservoir characterisation. Elsevier, Amsterdam, 509 pp.
Walliser, O.H., 1996. Global events in the Devonian and Carboniferous. [In:] O.H. Walliser (Ed.): Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, 225-250. DOI: https://www.doi.org/10.1007/978-3-642-79634-0_11
Zambito, J.J., IV, Brett, C.E. & Baird, G.C., 2012. The Late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. [In:] J.A.S. Talent (Ed.): Earth and life - global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Dordrecht, 677-703. DOI: https://www.doi.org/10.1007/978-90-481-3428-1_22
Žigaitė, Ž., Joachimski, M., Lehnert, O. & Brazauskas, A., 2010. δ18O composition from conodont apatite indicates climate cooling during the Middle Pridoli. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 242-247. DOI: https://www.doi.org/10.1016/j.palaeo.20103.033
License
This content is open access.