Application of the spatial database for shoreline change analysis and visualisation: example from the western Polish coast, southern Baltic Sea

Main Article Content

Robert Kostecki

Abstract

The main aim of the study was to introduce a spatial database application for the estimation of changes in shoreline position. The open-source PostgreSQL database system with the PostGIS spatial extension was used as the data store for digitalised shorelines. The solution to calculations of the shoreline changes was based on the functions written in the PL/SQL language and geospatial functions provided by the PostGIS extension. The traditional baseline and transects method was used to quantify the distances and rate of shoreline movement. Outputs of the calculations were stored in the database table and simply visualised using graphical functions in the R software environment or in GIS Desktop software. The advantage of presented method is the application of SQL language in the analysis of the relation between the geometry of shorelines stored in the database table, which, compared to other similar solutions, gives the user fully open, simple analytical code and enable selecting custom parameters of analysis, modifying code and performing additional calculations

Downloads

Download data is not yet available.

Article Details

How to Cite
Kostecki, R. (2019). Application of the spatial database for shoreline change analysis and visualisation: example from the western Polish coast, southern Baltic Sea. Quaestiones Geographicae, 37(3), 25-34. https://doi.org/10.2478/quageo-2018-0023
Section
Articles

References

  1. Ahmad S.R., Lakhan V.C., 2012. GIS-Based Analysis and Modeling of Coastline Advance and Retreat Along the Coast of Guyana. Marine Geodesy 35: 1–15. DOI:10.1080/01490419.2011.637851.
  2. Chaaban F., Darwishe H., Battiau-Quency Y., Louche B., Masson E., Khattabi J. El, Carlier E., 2012. Using ArcGIS® Modelbuilder and Aerial Photographs to Measure Coastline Retreat and Advance: North of France. Journal of Coastal Research 28: 1567–1579. DOI:10.2112/JCOASTRES-D-11-00054.1.
  3. Crowell M., Leatherman S.P., Douglas B.C., 2005. Erosion: historical analysis and forecasting. In: M.L. Schwartz (ed.), The Encyclopedia of Coastal Science. Springer, Dordrecht: 428–432.
  4. Dolan R., Hayden B., Heywood J., 1978. A new photogram-metric method for determining shoreline erosion. Coastal Engineering 2: 21–39. DOI:10.1016/0378-3839(78)90003-0.
  5. Dolan R., Fenster M., Holme, S., 1991. Temporal Analysis of Shoreline Recession and Accretion. Journal of Coastal Research 7: 723–744.
  6. Dudzińska-Nowak J., Furmańczyk K., 2005. Zaminy położenia linii brzegowej Zatoki Pomorskiej (latach 1938–1996). In: R.K. Borówka, S. Musielak (eds.), Środowisko Przyrodnicze Wybrzeży Zatoki Pomorskiej I Zalewu Szczecińskiego. In Plus Oficyna, Szczecin: 72–78.
  7. Jackson C.W., Alexander C.R., Bush, D.M., 2012. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Computers and Geosciences 41: 199–207. DOI:10.1016/j.cageo.2011.08.009.
  8. Kabacoff R.I., 2011. R in Action Data analysis and graphics with R. Manning Publications Co., New York.
  9. Kolega N., 2015. Coastline changes on the Slovenian coast between 1954 and 2010. Acta Geographica Slovenica 55–2: 205–221.
  10. Kostrzewski A., Zwoliński Z., 1988. Morphodynamics of the cliffed coast, Wolin Island. Geographica Polonica 55: 69–81.
  11. Kostrzewski A., Zwoliński Z., 1995. Present-day morphodynamics of the cliff coasts of Wolin Island. Journal of Coastal Research SI: 22: 293–303.
  12. Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., Samołyk M., 2015. Cliff top recession rate and cliff hazards for the sea coast of wolin Island (Southern Baltic). Baltica 28: 109–120. DOI:10.5200/baltica.2015.28.10.
  13. Liu Y., Huang H., Qiu Z., Fan J., 2013. Detecting coastline change from satellite images based on beach slope estimation in a tidal flat. International Journal of Applied Earth Observation and Geoinformation 23: 165–176. DOI:10.1016/j.jag.2012.12.005.
  14. Montreuil A.L., Bullard J.E., 2012. A 150-year record of coastline dynamics within a sediment cell: Eastern England. Geomorphology 179: 168–185. DOI:10.1016/j.geomorph.2012.08.008.
  15. Obe R.O., Hsu L.S., 2012. PostgreSQL:Up and Running. O’Reilly, Sebastopol.
  16. Obe R.O., Hsu L.S., 2015. PostGIS in Action, Second Edition. Manning Publications, Shelter Island.
  17. Río L. Del, Gracia F.J., Benavente J., 2013. Geomorphology Shoreline change patterns in sandy coasts. A case study in SW Spain. Geomorphology 196: 252–266. DOI:10.1016/j.geomorph.2012.07.027.
  18. Terefenko P., Giza A., Paprotny D., Kubick, A., Winowski M., 2018. Cliff Retreat Induced by Series of Storms at Międzyzdroje (Poland). Journal of Coastal Research SI: 85: 181–185.
  19. Thieler E.R., Himmelstoss E.A., Zichichi J.L., Ergul A., 2009. Digital Shoreline Analysis System (DSAS) version 4.0 – An ArcGIS extension for calculating shoreline change. In: U.S. Geological Survey Open-File Report 2008: 1278.