Comparsion of TRMM Precipitation Satellite Data over Central Java Region – Indonesia

Main Article Content

Andung Bayu Sekaranom
Emilya Nurjani
M. Pramono Hadi
Muh Aris Marfai


This research aims to compare precipitation data derived from satellite observation and ground measurements through a dense station network over Central Java, Indonesia. A precipitation estimate from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Version 7 are compared with precipitation data from interpolated rain gauge stations. Correlation analysis, mean bias error (MBE), and root mean square error (RMSE) were utilized in the analysis for each thee-monthly seasonal statistics. The result shows that the 3B42 products often estimate lower rainfall than observed from weather stations in the peak of the rainy season (DJF). Further, it is revealed that the 3B42 product are less robust in estimating rainfall at high elevation, especially when humid environment, which is typical during the rainy season peak, are involved.


Download data is not yet available.

Article Details

How to Cite
Sekaranom, A. B., Nurjani, E., Hadi, M. P., & Marfai, M. A. (2018). Comparsion of TRMM Precipitation Satellite Data over Central Java Region – Indonesia. Quaestiones Geographicae, 37(3), 97–114.


  1. Aerts J., Major D.C., Bowman M.J., Dircke P., Marfai M.A., 2009. Connecting delta cities: coastal cities, flood risk management and adaptation to climate change. Netherlands, VU University Press.
  2. Aldrian E., Susanto R.D., 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology 23(12): 1435–1452.
  3. Asquith W.H., Famiglietti J.S., 2000. Precipitation areal-reduction factor estimation using an annual-maxima centered approach. Journal of Hydrology 230(1–2): 55–69.
  4. As-Syakur A.R., Osawa T., Miura F., Nuarsa I., Ekayanti N.W., Dharma I.B.S., Tanaka T.2016. Maritime Continent rainfall variability during the TRMM era: the role of monsoon, topography and El Niño Modoki. Dynamics of Atmospheres and Oceans 75: 58–77.
  5. As-Syakur A.R., Tanaka T., Prasetia R., Swardika I.K., Kasa I.W., 2011. Comparison of TRMM multisatellite precipitation analysis (TMPA) products and daily-monthly gauge data over Bali. International journal of Remote Sensing 32(24): 8969–8982.
  6. Berg W., L’Ecuyer T., Kummerow C., 2006. Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. Journal of Applied Meteorology and Climatology 45(3): 434–454.
  7. Chang C.P., Wang Z., McBride J., Liu C.H., 2005. Annual cycle of Southeast Asia-Maritime Continent rainfall and the asymmetric monsoon transition. Journal of Climate 18(2): 287–301.
  8. Chen C., Yu Z., Li L., Yang C., 2011. Adaptability Evaluation of TRMM Satellite Rainfall and Its Application in the Dongjian River Basin. Procedia Environmental Sciences 10: 396–402.
  9. Collischonn B., Collischonn W., Tucci C., 2008. Daily Hydrological Modelling in the Amazon Basin using TRMM rainfall estimates. Journal of Hydrology 360: 207–216.
  10. Feidas H., 2010. Validation of satellite rainfall products over Greece. Theoretical and Applied Climatology 99(1–2): 193–216.
  11. Giarno G., Hadi M.P., Suprayogi S., Murti S.H., 2018. Distribution of Accuracy of TRMM Daily Rainfall in Makassar Strait. Forum geografi 32(1).
  12. Gopalan K., Wang N.-Y., Ferraro R., Liu C., 2010. Status of the TRMM 2A12 land precipitation algorithm. Journal of Atmospheric and Oceanic Technology 27(8): 1343–1354.
  13. Hamada A., Takayabu Y.N., Liu C., Zipser E.J., 2015. Weak linkage between the heaviest rainfall and tallest storms. Nature Communications 6: 6213.
  14. Hashiguchi H., Yamamoto M.K., Yamamoto M., Mori S., Yamanaka M.D., Carbone R.E., Tuttle J.D., 2013. Cloud episode propagation over the Indonesian Maritime Continent from 10years of infrared brightness temperature observations. Atmospheric Research 120: 268–286.
  15. Heidinger A.K., Pavolonis M.J., Holz R.E., Baum B.A., Berthier S., 2010. Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. Journal of Geophysical Research: Atmospheres 115(D4).
  16. Huffman G.J., Bolvin D.T., 2013. TRMM and other data precipitation data set documentation. Greenbelt USA, National Aeronautics and Space Administration (NASA).
  17. Huffman G.J., Bolvin D.T., Nelkin E.J., Wolff D.B., Adler R.F., Gu G., Hong Y., Bowman K.P., Stocker E.F., 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8(1): 38–55.
  18. Iguchi T., Kozu T., Meneghini R., Awaka J., Okamoto K.I., 2000. Rain-profiling algorithm for the TRMM precipitation radar. Journal of Applied Meteorology 39(12): 2038–2052.
  19. JAXA [Japan Aerospace Exploration Agency], 2005. Tropical Rainfall Measuring Mission TRMM) Precipitation Radar Algorithm: Instruction Manual for Version 6.
  20. Kuligowski R.J., Yaping L., Yu Z., 2013. Impact of TRMM data on a low-latency, high-resolution precipitation algorithm for flash-flood forecasting. Journal of Applied Meteorology and Climatology 52(6): 1379–1393.
  21. Kummerow C., Barnes W., Kozu T., Shiue J., Simpson J., 1998. The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology 15: 809–817.
  22. Kummerow C., Hong Y., Olson W.S., Yang S., Adler R.F., McCollum J., Ferraro R., Petty G., Shin D.B., Wilheit T.T., 2001. The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Applied Meteorology 40(11): 1801–1820.
  23. Kummerow C., Olson W.S., Giglio L., 1996. A simplified scheme for obtaining precipitation and vertical hydro-meteor profiles from passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing 34(5): 1213–1232.
  24. Liu C., Zipser E.J., 2014. Differences between the Surface Precipitation Estimates from the TRMM Precipitation Radar and Passive Microwave Radiometer Version 7 Products. Journal of Hydrometeorology 15:2157–2175.
  25. Liu Z., 2016. Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products: initial results. Journal of Hydrometeorology 17(3): 777–790.
  26. Mair A., Fares A., 2010. Comparison of rainfall interpolation methods in a mountainous region of a tropical island. Journal of Hydrologic Engineering 16(4): 371–383.
  27. Masunaga H., L’Ecuyer T.S., Kummerow C.D., 2005. Variability in the characteristics of precipitation systems in the tropical Pacific. Part I: Spatial structure. Journal of Climate 18: 823–840,
  28. Michaelides S., Levizzani V., Anagnostou E., Bauer P., Kasparis T., Lane J.E., 2009. Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research 94(4): 512–533.
  29. Morita J., Takayabu Y.N., Shige S., Kodama Y., 2006. Analysis of rainfall characteristics of the Madden–Julian oscillation using TRMM satellite data. Dynamics of Atmospheres and Oceans 42(1): 107–126.
  30. Naylor R.L, 2007. Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences 104(19): 7752–7757.
  31. Naylor R.L., Falcon W.P., Rochberg D., Wada N., 2001. Using El Nino/Southern Oscillation climate data to predict rice production in Indonesia. Climatic Change 50(3): 255–265.
  32. Peña-Arancibia J.L., van-Dijk A.I., Renzullo L.J., Mulligan M., 2013. Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and South and East Asia. Journal of Hydrometeorology 14(4): 1323–1333.
  33. Prakash S., Mitra A.K., Momin I.M., Pai D.S., Rajagopal E.N., Basu S., 2015. Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. Journal of Hydro-meteorology 16(1): 346–362.
  34. Prasetia R., As-Syakur A.R., Osawa T., 2013. Validation of TRMM Precipitation Radar satellite data over Indonesian region. Theoretical and Applied Climatology 112(3–4): 575–587.
  35. Qian J.-H., 2008. Why precipitation is mostly concentrated over islands in the Maritime Continent. Journal of Atmospheric Sciences 65: 1428–1441.
  36. Ropelewski C.F., Halpert M.S., 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review 115(8): 1606–1626.
  37. Saji N.H., Goswami B.N., Vinayachandran P.N., Yamagata T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401(6751):360.
  38. Salahuddin A., Curtis S., 2011. Climate extremes in Malaysia and the equatorial South China Sea. Global and Planetary Change 78(3): 83–91.
  39. Schneider U., Fuchs T., Meyer-Christoffer A., Rudolf B., 2008. Global precipitation analysis products of the GPCC. Germany, Global Precipitation Climatology Centre (GPCC).
  40. Schott F.A., McCreary J.P., 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography 51(1): 1–123.
  41. Sekaranom A.B., Masunaga H., 2017. Comparison of TRMM-Derived Rainfall Products for General and Extreme Rains over the Maritime Continent. Journal of Applied Meteorology and Climatology 56(7): 1867–1881.
  42. Shige S., Kida S., Ashiwake H., Kubota T., Aonashi K., 2013. Improvement of TMI rain retrievals in mountainous areas. Journal of Applied Meteorology and Climatology 52(1): 242–254.
  43. Sohn B.J., Choi M.J., Ryu J., 2015. Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions. Atmospheric Measurement Techniques 8: 4573–4585.
  44. Song H.-J., Sohn B.-J., Hong S.-Y., Hashino T., 2017. Idealized numerical experiments on the microphysical evolution of warm-type heavy rainfall. Journal of Geophysical Research: Atmospheres 122(3): 1685–1699.
  45. Stephens G.L., Vane D.G., Boain R.J., Mace G.G., Sassen K., Wang Z., Illingworth A.J., O’connor E.J., Rossow W.B., Durden S.L., Miller S.D., 2002. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society 83(12): 1771–1790.
  46. Vernimmen R.R.E., Hooijer A., Aldrian E., van-Dijk, A.I.J.M., 2012. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrology and Earth System Sciences 16(1): 133.
  47. WMO [World Meteorological Organization], 2002. Statement on Status of the Global Climate in 2001, WMO-No. 940. Genewa Switzerland, WMO.
  48. WMO [World Meteorological Organization], 2004. Statement on Status of the Global Climate in 2003, WMO-No. 966. Genewa Switzerland, WMO.
  49. WMO [World Meteorological Organization], 2010. Statement on Status of the Global Climate in 2009, WMO-NO. 1055. Genewa Switzerland, WMO.
  50. Yatagai A., Kamiguchi K., Arakawa O., Hamada A., Yasutomi N., Kitoh A., 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society 93(9): 1401–1415.
  51. Zagrodnik J.P., Jiang H., 2013. Investigation of PR and TMI Version 6 and Version 7 Rainfall Algorithms in Landfalling Tropical Cyclones Relative to the NEXRAD Stage-IV Multisensor Precipitation Estimate Dataset. Journal of Applied Meteorology and Climatology 52: 2809–2827.