GEOMORPHOLOGICAL CLASSIFICATION AND LANDFORMS INVENTORY OF THE MIDDLE-ATLAS VOLCANIC PROVINCE (MOROCCO): SCIENTIFIC VALUE AND EDUCATIONAL POTENTIAL

Main Article Content

Abdelmounji Amine
Iz-Eddine El Amrani El Hassani
Toufik Remmal
Fouad El Kamel
Benjamin Van Wyk de Vries
Pierre Boivin

Abstract

Through the tabular morphology of northwestern part of the Middle-Atlas in Morocco, numerous uncovered monogenetic volcanoes arise structured of pyroclastic product layers and lava flows. Our fieldwork results witness a wide-ranging volcanic shape spectrum, as cones, maars, tuff-rings, and cone-maar mixes, generally associated with a later lava flow discharge that could develop many surfaces and appearances. There are withal sundry eruptive products such as pahoehoe lava, scoria, tuff, lapilli, peperites, base-surges, bombs, etc. This monogenetic volcanic field of practically 1000 km2 offers remarkable eruptive landforms, referred to as the largest, and the youngest volcanic field in Morocco, which consists of a large area within the Ifrane National Park. This fieldwork study provides a renewed volcanic geomorphological classification table and GIS data to be used by a wide public range for both educational and geo-touristic interest and access effectively to such a high-mountain natural museum. In the event that these volcanic structures were appropriately dealt with, the high educational scientific content and the notable touristic vocation would almost certainly create business openings and new financial wages for neighborhood populaces. This work focuses to share our outcomes and emphases the scientific value about the monogenetic volcanic field around the tabular Middle-Atlas in Morocco.

Downloads

Download data is not yet available.

Article Details

How to Cite
Amine, A., El Amrani El Hassani, I.-E., Remmal, T., El Kamel, F., Van Wyk de Vries, B., & Boivin, P. (2019). GEOMORPHOLOGICAL CLASSIFICATION AND LANDFORMS INVENTORY OF THE MIDDLE-ATLAS VOLCANIC PROVINCE (MOROCCO): SCIENTIFIC VALUE AND EDUCATIONAL POTENTIAL. Quaestiones Geographicae, 38(1), 107-129. https://doi.org/10.2478/quageo-2019-0010
Section
Articles

References

  1. Amraoui F., Razack M., Bouchaou L., 2004. Comportement d'une source karstique soumise à une sécheresse prolongée: la source Bittit (Maroc). Comptes Rendus Geoscience, 336(12): 1099–1109.
  2. Anderson S.W., Smrekar S.E., Stofan E.R., 2012. Tumulus development on lava flows: insights from observations of active tumuli and analysis of formation models. Bulletin of Volcanology 74(4): 931–946. DOI: 10.1007/s00445-012- 0576-2.
  3. Applegarth L.J., Pinkerton H., James M.R., Calvari S., 2010. Lava flow superposition: The reactivation of flow units in compound’a’ā flows. Journal of Volcanology and Geothermal Research 194(4): 100–106.
  4. Bardintzeff J.-M., 2011. Les éruptions laviques. In: Volcanologie – 4ème édition, Dunod, Paris: 83–84.
  5. Batiza R., White J.D.L., 2000. Submarine Lavas and Hyalo-clastite. In: Encyclopedia of volcanoes: 361–381.
  6. Bemis K., Walker J., Borgia A., Turrin B., Neri M., Swisher III C., 2011. The growth and erosion of cinder cones in Guatemala and El Salvador: models and statistics. Journal of Volcanology and Geothermal Research 201(1–4): 39–52.
  7. Bentayeb A., Leclerc C., 1977. Le Causse moyen atlasique. In: Ressources En Eaux Du Maroc, Domaines Atlasiques et Sud-Atlasiques, Editions du service géologique du Maroc, Rabat: Tome III: 37–66.
  8. Boivin P., 2017. Les prismes basaltiques. Bulletin Historique et Scientifique de l'Auvergne, tome CXV/2, nos 802-803, juillet-décembre 2014, 24 p.
  9. Boivin P., Besson J.-C., Briot D., Camus G., de Goër de Hevre A., Gourgaud A., Labazuy P., de Larouzière F.-D., Livet M., Mergoil J., Miallier D., Morel J.-M., Vernet G., Vincent P., 2004. Volcanologie de la Chaîne des Puys, carte fascicule 5è édition, bilingue français – anglais. Editions Du Parc Régional Des Volcans d’Auvergne.
  10. Boivin P., Besson J.-C., Briot D., Camus G., de Goër de Hevre A., Gourgaud A., Labazuy P., de Larouzière F.- D., Livet M., Mergoil J., Miallier D., Morel J.-M., Vernet G., Vincent P., 2009. Volcanologie de la Chaîne des Puys, 4è édition bilingue. Editions Du Parc Régional Des Volcans d’Auvergne, Aydat, 179.
  11. Boivin P., Bourdier J.L., Camus G., de Goer de Herve A., Gourgaud A., Kieffer G., Mergoil J., Vincent P.M., Auby R., 1982. Influence de la Nature des Magmas sur l’Activité Phréatomagmatique: Approche Volcanologique et Thermodynamique. Bulletin Volcanologique 45(1): 25–39.
  12. Boivin P., Gourgaud A., 1978. Synchronisme des dynamismes de type «maar» et «strombolien» près de La Sauvetat (Sud-Devès—Massif central français). Comptes rendus sommaires des séances de la Société géologique de France Paris 1: 24–27.
  13. Brand B.D., Clarke A.B., 2009. The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: From a Surtseyan to an energetic maar eruption. Journal of Volcanology and Geothermal Research 180(2–4): 203–224.
  14. Büchel G., 1993. Maars of the Westeifel, Germany. In: Paleolimnology of European maar lakes. Springer, Berlin, Heidelberg: 1–13.
  15. Büchel G., Negendank J.F.W., Wuttke M., Viereck L., 2000. Quaternary and Tertiary Eifel maars, Enspel (Westerwald) and Laacher See: Volcanology, sedimentology and hydrogeology. In: Field trip guidebook. International Maar Conference, Daun/Vulkaneifel (Germany): 17–27.
  16. Camus G., Vincent J.-M., 1973. Le Chuquet Genestoux et les projections palagonitiques du maar d’Enval. Revue des Société d’histoire naturelle d’Auvergne 39(1–4): 1–12.
  17. Carracedo Sánchez M., Sarrionandia F., Arostegui J., Eguiluz L., Gil Ibarguchi J.I., 2012. The transition of spatter to lava-like body in lava fountain deposits: features and examples from the Cabezo Segura volcano (Calatrava, Spain). Journal of Volcanology and Geothermal Research 227–228: 1–14.
  18. Chanouan L., Ikenne M., Gahlan H.A., Arai S., Youbi N., 2016. Petrological characteristics of mantle xenoliths from the Azrou-Timahdite quaternary basalts, middle atlas, Morocco: A mineral chemistry perspective. Journal of African Earth Sciences 127: 235–252.
  19. Charriere A., 1984. Évolution néogène de bassins continentaux et marins dans le Moyen Atlas central (Maroc). Bulletin de La Société Géologique de France 7(6): 1127–1136.
  20. Chough S.K., Sohn Y.K., 1990. Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37(6): 1115–1135. DOI: 10.1111/j.1365-3091.1990.tb01849.x.
  21. Clarke H., Troll V.R., Carracedo J.C., 2009. Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. Journal of Volcanology and Geothermal Research 180(2–4): 225–245. DOI: 10.1016/j.jvolgeores.2008.11.014.
  22. Clarke H., Troll V.R., Carracedo J.C., Byrne K., Gould R., 2005. Changing eruptive styles and textural features from phreatomagmatic to strombolian activity of basaltic littoral cones: Los Erales cinder cone, Tenerife, Canary Islands. Estudios Geológicos 61(3–6): 121–134. DOI: 10.3989/ egeol.05613-650.
  23. de Silva S., Lindsay J.M., 2015. Primary Volcanic Landforms. In: H. Sigurdsson (Ed.), The Encyclopedia of Volcanoes (Second Edition), Academic Press, Amsterdam: 273–297. DOI: 10.1016/B978-0-12-385938-9.00015-8.
  24. De Waele J., Di Gregorio F., El Wartiti M., Malaki A., Melis M.T., 2005. Carta dei geomorfositi e della geodiversità d’Ifrane-Azrou (Medio Atlante, Marocco). In: AA. VV. (ed.), 9 Conferenza ASITA, Catania: 939–944.
  25. De Waele J., Di Gregorio F., Melis M.T., El Wartiti M., 2008. Landscape units, geomorphosites and geodiversity of the Ifrane Azrou region (Middle Atlas, Morocco). Memorie Descriptive. Carta Geolologica d’Italia LXXXVII: 63–76.
  26. Diniega S., Németh K., 2014. Tumulus. In: Encyclopedia of Planetary Landforms, Springer, New York: 1–6. DOI: 10.1007/978-1-4614-9213-9_387-1.
  27. Dóniz-Páez J., 2015. Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain). Geomorphology 228: 432–447.
  28. Dóniz-Páez J., Becerra-Ramírez R., Guillén-Martín C., González-Cárdenas E., Escobar-Lahoz E., 2008. Patrimonio geomorfológico del complejo volcánico de la Corona de El Lajial (El Hierro, Islas Canarias, España). X.Ubeda, D.Vericat, R.J.Batalla (ed.), Avances de La Geomorfología En España, 2010: 361–364.
  29. Dragoni M., Piombo A., Tallarico A., 1995. A model for the formation of lava tubes by roofing over a channel. Journal of Geophysical Research: Solid Earth 100(B5): 8435–8447. DOI: 10.1029/94JB03263.
  30. Dragoni M., Santini S., 2007. Lava flow in tubes with elliptical cross sections. Journal of Volcanology and Geothermal Research 160(3): 239–248.
  31. El Arabi H., Ouahhabi B., Charriere A., 2001. Les series du Toarcien-Aalenien du SW du Moyen-Atlas (Maroc); precisions stratigraphiques et signification paleogeographique. Bulletin de La Société Géologique de France 172(6): 723–736.
  32. El Azzouzi M., 2002. Volcanisme Calco-Alcalin et Alcalin en Contexte Post-Collision Continentale: Exemple du Maroc. These d’état. Univ. Mohammed V, Rabat.
  33. El Azzouzi M., Maury R.C., Bellon H., Youbi N., Cotten J., Kharbouch F., 2010. Petrology and K-Ar chronology of the Neogene-Quaternary Middle Atlas basaltic province, Morocco. Bulletin de La Société Géologique de France 181(3): 243–257.
  34. El Wartiti M., Malaki A., Zahraoui M., Di Gregorio F., De Waele J., 2009. Geosites and touristic development of the Northwestern Tabular Middle Atlas of Morocco. In: Desertification and risk analysis using high and medium resolution satellite data, Springer: 143–156.
  35. Fedan B., 1989. Evolution géodynamique d’un bassin intraplaque sur décrochements: le Moyen Atlas (Maroc) durant le Méso-Cénozoïque. Travaux de l’Institut scientifique. Série géologie et géographie physique, n° 18.
  36. Fedan B., Thomas G., 1986. Découverte de dépôts néogenes déformés par I’accident nord-moyen-atlasique (Maroc). Implications Sur Son Activité Mio-Plio-Quaternaire Au Norde de Boulemane. Géolgie Méditerranéeane, Tome XII-XIII (1985–1986), n° 3–4, 13(4) : 151–154.
  37. Fisher R.V., 1977. Erosion by volcanic base-surge density currents: U-shaped channels. Geological Society of America Bulletin 88(9): 1287–1297.
  38. Fisher R.V., 1979. Models for pyroclastic surges and pyroclastic flows. Journal of Volcanology and Geothermal Research 6(3): 305–318.
  39. Fisher R.V., Waters A.C., 1970. Base surge bed forms in maar volcanoes. American Journal of Science 268(2): 157–180.
  40. Giordano D., Polacci M., Papale P., Caricchi L., 2010. Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid Earth 1: 61–69.
  41. Goehring L., Morris S.W., 2008. Scaling of columnar joints in basalt. Journal of Geophysical Research: Solid Earth 113(B10): B10203. DOI: 10.1029/2007JB005018.
  42. Harmand C., Cantagrel J.M., 1984. Le volcanisme alcalin Tertiaire et Quaternaire du Moyen Atlas (Maroc): chronologie K/Ar et cadre géodynamique. Journal of African Earth Sciences (1983) 2(1): 51–55.
  43. Harmand C., Moukadiri A., 1986. Synchronisme entre tectonique compressive et volcanisme alcalin; exemple de la province quaternaire du Moyen Atlas (Maroc). Bulletin de La Societe Geologique de France 2(4): 595–603.
  44. Harris A.J., Rowland S.K., 2015. Lava flows and rheology. In: The Encyclopedia of Volcanoes (Second Edition), Elsevier: 321–342.
  45. Head III J.W., Wilson L., 1989. Basaltic pyroclastic eruptions: influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. Journal of Volcanology and Geothermal Research 37(3): 261–271.
  46. Hernandez J., de Larouziere F.D., Bolze J., Bordet P., 1987. Le magmatisme néogène bético-rifain et le couloir de décrochement trans-Alboran. Bulletin de La Société Géologique de France 3(2): 257–267.
  47. Hon K., Gansecki C., Kauahikaua J., 2003. The Transition from ‘A’a to Pāhoehoe Crust on Flows. US Geological Survey Professional Paper 1676: 1–89.
  48. Hooten J.A., Ort M.H., 2002. Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. Journal of Volcanology and Geothermal Research 114(1): 95–106.
  49. Houghton B.F., Gonnermann H.M., 2008. Basaltic explosive volcanism: constraints from deposits and models. Chemie Der Erde-Geochemistry 68(2): 117–140.
  50. Houghton B.F., Schmincke H.-U., 1986. Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism: Rothenberg volcano, east Eifel volcanic field. Journal of Volcanology and Geothermal Research 30(1): 117–130. DOI: 10.1016/0377-0273(86)90069-7.
  51. Houghton B.F., Wilson C.J.N., Rosenberg M.D., Smith I.E.M., Parker R.J., 1996. Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bulletin of Volcanology 58(1): 59–66. DOI: 10.1007/s004450050126.
  52. Kereszturi G., Németh K., 2012. Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: K.Németh (ed.), Updates in Volcanology – New Advances in Understanding Volcanic Systems, InTech: 3–88.
  53. Kereszturi G., Németh K., Csillag G., Balogh K., Kovács J., 2011. The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. Journal of Volcanology and Geothermal Research 201(1–4): 227–240. DOI: 10.1016/j.jvolgeores.2010.08.018.
  54. Kilburn C.R., 2000. Lava flows and flow fields. H.Sigurdsson, B.Houghton, S.McNutt, H.Rymer, J.Stix (eds.) Encyclopedia of volcanoes. Academic Press, San Diego: 291–305.
  55. Kilburn, C. R., 2004. Fracturing as a quantitative indicator of lava flow dynamics. Journal of Volcanology and Geothermal Research, 132(2–3), 209–224.
  56. Kshirsagar P., Siebe C., Guilbaud M.N., Salinas S., 2016. Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). Journal of Volcanology and Geothermal Research 318: 114–133.
  57. Lagmay A.M.F., Vries B. van W. de, Kerle N., Pyle D.M., 2000. Volcano instability induced by strike-slip faulting. Bulletin of Volcanology 62(4–5): 331–346. DOI: 10.1007/ s004450000103.
  58. Lenaz D., Youbi N., De Min A., Boumehdi M.A., Ben Abbou M., 2014. Low intra-crystalline closure temperatures of Cr-bearing spinels from the mantle xenoliths of the Middle Atlas Neogene-Quaternary Volcanic Field (Morocco): Mineralogical evidence of a cooler mantle beneath the West African Craton. American Mineralogist 99(2–3): 267–275. DOI: 10.2138/am.2014.4655
  59. Lepoutre B., Martin J., Chamayou J., 1966. Le Causse moyen-Atlasique. Le Causse moyen-atlasique. Les cahiers de la recherche agronomique n° 24 1967. Congrès de Pédologie Méditerranéenne, Madrid (ES), 1966/09. Excursion au Maroc livret-guide: tome 2. Descriptions des régions traversées, Chapitre 4, 207–226 p.
  60. Lorenz V., 1973. On the formation of maars. Bulletin Volcanologique 37(2): 183–204.
  61. Lorenz V., 1984. Explosive volcanism of the West Eifel volcanic field/Germany. In: Developments in Petrology 11: 299–307.
  62. Lorenz V., 1986. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bulletin of Volcanology 48(5): 265–274. DOI: 10.1007/BF01081755.
  63. Lorenz V., Suhr P., Goth K., 2003. Maar-Diatrem-Vulkanismus-Ursachen und Folgen. Die Guttauer Vulkangruppe in Ostsachsen als Beispiel fur die komplexen Zusammenhange. Zeitschrift Fur Geologische Wissenschaften 4(6): 267–312.
  64. Lorenz V., Suhr P., Suhr S., 2016. Phreatomagmatic maar-diatreme volcanoes and their incremental growth: a model. Geological Society, London, Special Publications 446 29–59. DOI: 10.1144/SP446.4.
  65. Malaki A., 2006. Géosites: Intérêt scientifique, patrimoine culturel et visées socio-économiques, au niveau d’Ifrane, Azrou, Aîn leuh et El Hajeb (causse moyen at-lasique). Thèse de doctorat national en géologie, Faculté des Sciences de Rabat: 105–247.
  66. Martin J., 1974. Les trous du plateau d’Azrou: un exemple de cryptokarst. Mémoires et Documents, Nouvelle séries, vol. 15. Phénomènes karstiques, tome II 161–175.
  67. Martin J., 1981. Le Moyen Atlas central étude géomorphologique. Ed. du Service géologique du Maroc. Notes et Mémoires Service Géologique du Maroc 258 bis: 248–340.
  68. Mavrogonatos K., Flemetakis S., Papoutsa A., Klemme S., Berndt J., Economou G., Pantazidis A., Baziotis I., Asimow P.D., 2016. Phosphorus Zoning From Secondary Olivine In Mantle Xenolith From Middle Atlas Mountains (Morocco, Africa): Implications For Crystal Growth Kinetics. Bulletin of the Geological Society of Greece 50(4): 1923–1932.
  69. Menjour F., Remmal T., Hakdaoui M., Kamel F. E., Lakroud K., Amraoui F., El Amrani El Hassani I., Van Wyk de Vries B., Boivin P., 2017. Role of Fracturing in the Organization of the Karst Features of Azrou Plateau (Middle Atlas, Morroco) Studied by Remote Sensing Imagery. Journal of the Indian Society of Remote Sensing 4596: 1015–1030. DOI: 10.1007/s12524-016-0646-6.
  70. Miche H., Saracco G., Mayer A., Qarqori K., Rouai M., Dekayir A., Chalikakis K., Emblanch C., 2018. Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation. Hydrogeology Journal 26(1): 71– 87. DOI: 10.1007/s10040-017-1675-0.
  71. Mountaj S., Remmal T., El Hassani El Amrani I., Van Wyk De Vries B., Boivin P., 2014. Reconstruction of the morphological evolution and the eruptive dynamics of the Lachemine n’Ait el Haj Maar in the Middle Atlas. Karstic province of Morroco. In: Proceedings 5th International Maar Conference, Queretaro, Mexico: 4–5.
  72. Neri A., Papale P., Macedonio G., 1998. The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. Journal of Volcanology and Geothermal Research 87(1–4): 95–115. DOI: 10.1016/ S0377-0273(98)00102-4.
  73. Németh K., 2012. An Overview Of The Monogenetic Volcanic Fields Of The Western Pannonian Basin: Their Field Characteristics And Outlook For Future Research From A Global Perspective. In: F.Stoppa (ed.), Updates In Volcanology – A Comprehensive Approach To Volcanological Problems. Intech, Rijeka, Croatia, 27–52 p.
  74. Németh K., Haller M. J., Martin U., Risso C., Massaferro G., 2008. Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya). Zeitschrift Fuer Geomorphologie 52(2): 181–194.
  75. Németh K., Martin U., Harangi S., 2001. Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). Journal of Volcanology and Geothermal Research 111(1): 111–135.
  76. Németh K., White J.D.L., 2003. Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. Journal of Volcanology and Geothermal Research 124(1–2): 1–21. DOI: 10.1016/S0377-0273(03)00042-8.
  77. Németh K., White J.D.L., 2009. Miocene phreatomagmatic monogenetic volcanism of the Waipiata Volcanic Field, Otago, New Zealand. In: I.M.Turnbull (ed.), Field Trip Guides, Geosciences 09 Conference, Oamaru, New Zealand. Geological Society of New Zealand Miscellaneous Publication 128B: 134.
  78. Ort M.H., Elson M.D., Anderson K.C., Duffield W.A., Samples T.L., 2008. Variable effects of cinder-cone eruptions on prehistoric agrarian human populations in the American southwest. Journal of Volcanology and Geothermal Research 176(3): 363–376. DOI: 10.1016/j.jvolgeores.2008.01.031
  79. Paguican E.M.R., Bursik M.I., 2016. Tectonic Geomorphology and Volcano-Tectonic Interaction in the Eastern Boundary of the Southern Cascades (Hat Creek Graben Region), California, USA. Frontiers in Earth Science 4. DOI: 10.3389/feart.2016.00076.
  80. Parfitt E.A., 2004. A discussion of the mechanisms of explosive basaltic eruptions. Journal of Volcanology and Geothermal Research 134(1–2): 77–107. DOI: 10.1016/j.jvolgeores.2004.01.002.
  81. Parfitt E.A., Wilson L., 1995. Explosive volcanic eruptions— IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophysical Journal International 121(1): 226–232.
  82. Peterson D.W., Tilling R.I., 1980. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors. Journal of Volcanology and Geothermal Research 7(3): 271–293. DOI: 10.1016/0377- 0273(80)90033-5.
  83. Peyron M., 1980. Les chutes de neige dans l’Atlas marocain. Revue de Géographie Alpine 68(3): 237–254.
  84. Riedel C., Ernst G.G. J., Riley M., 2003. Controls on the growth and geometry of pyroclastic constructs. Journal of Volcanology and Geothermal Research 127(1–2): 121–152.
  85. Rodriguez-Gonzalez A., Fernandez-Turiel J. L., Perez-Torrado F. J., Paris R., Gimeno D., Carracedo J. C., Aulinas M., 2012. Factors controlling the morphology of monogenetic basaltic volcanoes: The Holocene volcanism of Gran Canaria (Canary Islands, Spain). Geomorphology 136(1): 31–44.
  86. Romero C., 1991. Las manifestaciones volcánicas históricas del Archipiélago Canario (Tomo I). University of La Laguna, Sta. Cruz de Tenerife (Spain).
  87. Romero C., 1992. Estudio geomorfológico de los volcanes históricos de Tenerife. ACT, Santa Cruz de Tenerife, 265 p.
  88. Rosseel J.-B., White J.D.L., Houghton B.F., 2006. Complex bombs of phreatomagmatic eruptions: Role of agglomeration and welding in vents of the 1886 Rotomahana eruption, Tarawera, New Zealand. Journal of Geophysical Research Solid Earth 111(B12205). DOI: 10.1029/2005JB004073.
  89. Saucedo R., Macías J.L., Ocampo-Díaz Y.Z.E., Gómez-Villa W., Rivera-Olguín E., Castro-Govea R., Sánchez-Núñez J.M., Layer P.W., Torres Hernández J.R., Carrasco-Núñez G., 2017. Mixed magmatic–phreatomagmatic explosions during the formation of the Joya Honda maar, San Luis Potosí, Mexico. Geological Society, London, Special Publications 446(1): 255–279. DOI: 10.1144/SP446.11.
  90. Schmincke H.-U., Fisher R.V., Waters A.C., 1973. Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20(4): 553–574.
  91. Schumacher R., Schmincke H.-U., 1995. Models for the origin of accretionary lapilli. Bulletin of Volcanology 56(8): 626–639. DOI: 10.1007/BF00301467.
  92. Sheridan M.F., Wohletz K.H., 1983. Hydrovolcanism: basic considerations and review. Journal of Volcanology and Geothermal Research 17(1): 1–29.
  93. Siebe C., 1986. On the possible use of cinder cones and maars as palaeoclimatic indicators in the closed basin of Serdanoriental, Puebla, México. Journal of Volcanology and Geothermal Research 28(3–4): 397–400.
  94. Skacelova Z., Rapprich V., Valenta J., Hartvich F., Sramek J., Radon M., Gaždová R., Nováková L., Kolínský P., Pécskay Z., 2010. Geophysical research on structure of partly eroded maar volcanoes: Miocene Hnojnice and Oligocene Rychnov volcanoes (northern Czech Republic). Journal of Geosciences 55(4): 333–345. DOI: 10.3190/ jgeosci.072.
  95. Skilling I.P., White J.D.L., McPhie J., 2002. Peperite: a review of magma–sediment mingling. Journal of Volcanology and Geothermal Research 114(1): 1–17.
  96. Spry A., 1962. The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia 8(2): 191–216. DOI:10.1080/14400956208527873.
  97. Stárková M., Rapprich V., Breitkreuz C., 2012. Variable eruptive styles in an ancient monogenetic volcanic field: examples from the Permian Levín Volcanic Field (Krkonoše Piedmont Basin, Bohemian Massif). Journal of Geosciences 56(2): 163–180. DOI: 10.3190/jgeosci.095.
  98. Strong M., Wolff J., 2003. Compositional variations within scoria cones. Geology 31(2): 143–146.
  99. Sumner J.M., 1998. Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bulletin of Volcanology 60(3): 195–212.
  100. Sumner J.M., Blake S., Matela R.J., Wolff J.A., 2005. Spatter. Journal of Volcanology and Geothermal Research 142(1): 49– 65.
  101. Taddeucci J., Edmonds M., Houghton B., James M.R., Vergniolle S., 2015. Hawaiian and Strombolian eruptions. The Encyclopedia of Volcanoes, 2nd Edn. Academic Press, Amsterdam: 485–503.
  102. Traglia F.D., Cimarelli C., Rita D. de, Torrente D.G., 2009. Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). Journal of Volcanology and Geothermal Research 180(2–4): 89–109. DOI: 10.1016/j.jvolgeores.2008.10.020.
  103. Vergniolle S., Brandeis G., 1996. Strombolian explosions: 1. A large bubble breaking at the surface of a lava column as a source of sound. Journal of Geophysical Research: Solid Earth 101(B9): 20433–20447.
  104. Vespermann D., Schmincke H.-U., 2000. Scoria cones and tuff rings. In: H. Sigurdsson (Ed.), Encyclopedia of volcanoes, Academic Press, San Diego: 683–694.
  105. Vries B.V.W.D., Borgia A., 1996. The role of basement in volcano deformation. Geological Society, London, Special Publications 110(1): 95–110. DOI: 10.1144/GSL. SP.1996.110.01.07.
  106. Walker G.P.L, Sigurdsson H., 2000. Basaltic volcanoes and volcanic systems. In: H. Sigurdsson (Ed.), Encyclopedia of volcapnoes, Academic Press, San Diego: 283–289 p.
  107. Walker G.P.L., 1991. Structure, and origin by injection of lava under surface crust, of tumuli,“lava rises”,“lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bulletin of Volcanology 53(7): 546–558.
  108. Wohletz K.H., 1998. Pyroclastic surges and compressible two-phase flow. Chap. 7. In: Magma to Tephra. Elsevier, Amsterdam: 247–312.
  109. Wohletz K.H., Mcql R.C., 1984. Experimental studies of hydromagmatic volcanism. Explosive Volcanism: Inception, Evolution, and Hazards: 158–169.
  110. Wohletz K.H., Sheridan M.F., 1983. Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. American Journal of Science 283(5): 385–413. DOI: 10.2475/ ajs.283.5.385
  111. Wood D.A., 1980. The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters 50(1): 11–30.