Main Article Content

Heri Ismanto
Hartono Hartono
Muh Aris Marfai


Smoke can reduce the airport’s visibility and is related to the aviation safety and efficiency. Low visibility has potential safety hazard, such GA-152 crashed in 1997, and thus there is a need to find out the visibility characteristics in airports over Sumatra and Borneo Island caused by 2015 forest fire. This research aims to analyse the spatiotemporal visibility characteristics over airports in Sumatera and Borneo Island using flight rule visibility below minima criteria and hazard probability. The analysis of smoke was characterized using visibility severity index (VSI) that is a function of visibility severity class and its probability level. Spatiotemporal analysis of severity index combined with hotspot and wind numerical weather model indicates that the worst impact visibility occurred in September and October 2015. The lowest visibility was occured over night until afternoon time period. The spread of VSI impact has a tendency to northward and northwestward. The very high VSI levels occurred at airports such: WIJJ (Jambi), WIBB (Pekanbaru), WAGG (Palangkaraya) which were impacted up to 70% of flight operations time with IFR visibility below minima; while the WIOS (Susilo-Sintang), which operates only on VFR, experienced about 92% of VFR visibility below minima at smoke climax period.


Download data is not yet available.

Article Details

How to Cite


  1. Afrianto Y., Marfai M.A., Hadi M.P., 2015. Pemodelan Bahaya Banjir dan Analisis Risiko Banjir Studi Kasus: Kerusakan Tanggul Kanal Barat Jakarta Tahun 2013. Majalah Geografi Indonesia 29(1): 95–110.
  2. Aiken S.R., 2004. Runaway fires, smoke-haze pollution, and unnatural disasters in Indonesia. Geographical Review 94: 55–79.
  3. Baccini A., 2001. Frequentist Probability and Choice under Uncertainty Frequentist Probability and Choice under Uncertainty. History of Political Economy, (February). DOI: 10.1215/00182702-33-4-743.
  4. Balarabe M., Abdullah K., Nawawi M., 2015. Long-Term Trend and Seasonal Variability of Horizontal Visibility in Nigerian Troposphere. Atmosphere 6(10): 1462–1486. DOI: 10.3390/atmos6101462.
  5. CWB [Central Weather Bureau], n.d. Haze. Online: (accessed 15 October 2017).
  6. DGCA [Director General of Civil Aviation], 2015. General Operation and Flight Rules (Civil Avia). Indonesia: Diretorate General Civil Avition. Republic of Indonesia Ministry of Transportation.
  7. ECMWF [European Centre for Medium-Range Weather Forecasts], 2018. ERA5 Catalogue. Online: (accessed 1 September 2018).
  8. FAA [Federal Aviation Administration], 2009. General Aviation Pilot’s Guide to Preflight Weather Planning, Weather Self-Briefings, and Weather Decision Making.
  9. Ge C., Wang J., Reid J.S., 2014. Mesoscale modeling of smoke transport over the Southeast Asian maritime continent: Coupling of smoke direct radiative effect below and above the low-level clouds. Atmospheric Chemistry and Physics 14(1): 159–174. DOI: 10.5194/acp-14-159-2014.
  10. Giglio L., 2010. MODIS Collection 5 Active Product User’s Guide. Online: (accessed 12 March 2019).
  11. Glahn B., Schanpp D., Im J., 2015. The Lamp and HRRR Ceiling Height and Visibility MELD.
  12. Goh J., Wiegmann D., 2002. Human factors analysis of accidents involving visual flight rules flight into adverse weather. Aviation Space and Environmental Medicine 73(8): 817–822.
  13. Gunawan A., 2015. Airlines calculate losses due to haze (2015 10 01). Online: (accessed 1 January 2018).
  14. Hantson S., Padilla M., Corti D., Chuvieco E., 2013. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment 131: 152–159. DOI: 10.1016/j.rse.2012.12.004.
  15. Heil A., Goldammer G., 2001. Smoke-haze pollution : a review of the 1997 episode in Southeast Asia. Regional Environmental Change 2: 24–37. DOI: 10.1007/s101130100021.
  16. Heil A., Langmann B., Aldrian E., 2007. Indonesian peat and vegetation fire emissions : Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitigation and Adaptation Strategies for Global Change 12: 113–133. DOI: 10.1007/s11027-006-9045-6.
  17. Herzegh P., Wiener G., Bateman R., Cowie J., Black J., 2015. Flight safety data fusion enables better recognition of ceiling and visibility hazards in aviation. American Meteorological Society, (April). DOI: 10.1175/BAMS-D-13-00111.1.
  18. Hunter D.R., Martinussen M., Wiggins M., O’Hare D., 2011. Situational and personal characteristics associated with adverse weather encounters by pilots. Accident Analysis and Prevention 43(1): 176–186.
  19. ICAO [International Civil Aviation Organization], 2011. Doc. 8896 Manual of Aeronautical Meteorological Practice (Ninth Edit). Montreal, Quebec, Canada.
  20. ICAO [International Civil Aviation Organization], 2012. Rules of the Air, Annex 2 to the Convention on International Civil Aviation. DOI: 10.1007/978-3-642-25835-0.
  21. ICAO [International Civil Aviation Organization], 2013. Doc 9859 Safety Management Manual (SMM) (Third Edit). Montreal, Quebec, Canada: International Civil Aviation Organization.
  22. INDOAVIS, 2013. Aerodrome / Airport Diagram Chart Legend. PT. INDOAVIS NUSANTARA.
  23. Ismanto H., Hartono H., Marfai M.A., 2018. Smoke detections and visibility estimation using Himawari _ 8 satellite data over Sumatera and Borneo Island Indonesia. Spatial Information Research 27(2): 205–216. DOI: 10.1007/s41324-018-0225-8.
  24. Jackman B., 2014. Policy violations predicting fatal general aviation accident from visual flight rules to instrument meteorological conditions.
  25. Janic M., 2000. An assessment of risk and safety in civil aviation. Journal of Air Transport Management 6: 43–50.
  26. Jenamani R.K., Kumar A., 2013. Bad weather and aircraft accidents – global vis-a-vis Indian scenario. Current Science 104(3): 316–325.
  27. Lari S., Frattini P., Crosta G.B., 2014. A probabilistic approach for landslide hazard analysis. Engineering Geology 182: 3–14. DOI: 10.1016/j.enggeo.2014.07.015.
  28. McKirdy E., 2015. Southeast Asia’s haze crisis: A “crime against humanity”. Online: (accessed 23 February 2016).
  29. Michoud C., Derron M., Horton P., Jaboyedoff M., Baillifard F.-J., Loye A., Nicolet P., Pedrazzini A., Queyrel A., 2012. Rockfall hazard and risk assessments along roads at a regional scale : example in Swiss Alps. Natural Hazards and Earth System Sciences 12: 615–629. DOI: 10.5194/nhess-12-615-2012.
  30. Oster C.V, Strong J.S., Zorn C.K., 2013. Analyzing aviation safety : Problems, challenges, opportunities. Research in Transportation Economics 43(1): 148–164. DOI: 10.1016/j.retrec.2012.12.001.
  31. Rashid I., Parvez I.A., Ahmad S., 2018. Seismic hazard and probability assessment of Kashmir. Natural Hazards 93(3): 1451–1477. DOI: 10.1007/s11069-018-3362-4.
  32. Rudack D.E., Ghirardelli J.E., 2010. A Comparative Verification of Localized Aviation Model Output Statistics Program (LAMP) and Numerical Weather Prediction ( NWP ) Model Forecasts of Ceiling Height and Visibility. Weather and Forecasting 25: 1161–1178. DOI: 10.1175/2010WAF2222383.1.
  33. Saide P.E., Peterson D.A., da Silva A., Anderson B., Ziemba L.D., Diskin G., Sachse G., Hair J., Butler C., Fenn M., Jimenez J.L., Campuzano-Jost P., Perring A.E., Schwarz J.P., Markovic M.Z., Russell P., Redemann J., Shinozuka Y., Streets D.G., Yan F., Dibb J., Yokelson R., Toon O.B., Hyer E., Carmichael G.R., 2015. Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters 42: 3609–3618. DOI: 10.1002/2015GL063737.
  34. State-Argentina. 2016. Risk Index – Algorithm to Assess Probability (No. A39–WP/188). Online: (accessed 12 march 2019).
  35. Tosca M.G., Randerson J.T., Zender C.S., Nelson D.L., Diner D.J., Logan J.A., 2011. Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia. Journal of Geophysical Research 116: 1–14. DOI: 10.1029/2010JD015148.
  36. Wang J., Ge C., Yang Z., Hyer E.J., Reid J.S., Chew B.N., Zhang M., 2013. Mesoscale modeling of smoke transport over the Southeast Asian Maritime Continent: Interplay of sea breeze, trade wind, typhoon, and topography. Atmospheric Research 122: 486–503. DOI: 10.1016/j.atmosres.2012.05.009.
  37. Wang Y., Field R.D., Roswintiarti O., 2004. Trends in atmospheric haze induced by peat fires in Sumatra Is¬land , Indonesia and El Nino phenomenon from 1973 to 2003. Geophysical Research Letters 31(4): 1–4. DOI: 10.1029/2003GL018853.
  38. Wangermann J.P., 2003. Principled negotiation and distributed optimization for advance air traffic management. Princeton University.
  39. Widodo A.M., Dulbahri D., Hartono H., 2017. Penggunaan Data Penginderaan Jauh dan Sistem Informasi Geografis untuk Pembuatan Prototipe Perangkat Lunak Simulasi Penyebaran Kebakaran Hutan. Majalah Geografi Indonesia 31(1): 12–21.
  40. Wiegmann D.A., Goh J., O’Hare D., 2002. The role of situation assessment and flight experience in pilots’ decisions to continue visual flight rules flight into adverse weather. Human Factors 44(2): 189–197.
  41. Xian P., Reid J.S., Atwood S.A., Johnson R.S., Hyer E.J., Westphal D.L., Sessions W., 2013. Smoke aerosol transport patterns over the Maritime Continent. Atmospheric Research 122:, 469–485. DOI: 10.1016/j.atmosres.2012.05.006.