ANALYSING RIVERBED MORPHOLOGY AS A RESPONSE TO CHANGES OF GEOLOGICAL AND NEOTECTONIC CONDITIONS: A CASE STUDY OF THE OĽŠAVA RIVER

Main Article Content

Dušan Barabas
Matúš Tkáč

Abstract

The morphological examination of the Slovak Oľšava River channel and valley parameters is based on observation of changes in the troughs’ longitudinal profile. While the relationship between valley and channel parameters has previously been researched, establishment of the diverse conditions in trough formation enables better understanding of the basin/riverbed relationship. Our research is based on field measurements of representative sections of nine segments defined by changes in the longitudinal profile. The field measurements were performed in autumn months during a low water period to ensure the best conditions for repeated measurements. Significantly, as much as 75% asymmetry of the measured flow encourages the assumption of strong tectonic influence on the riverbed formation. While the difference between the assumed continuous changes of measured parameters and the actual measured or evaluated parameters remains a matter of interpretation, the detected anomalies enable interpretation of the parameters’ relationships. The river bed and the valley morphological parameters were evaluated on the model of The Olšava River basin which drains the eastern part of the Košická kotlina Basin (the Toryská pahorkatina Upland). The location of the basin at the foot of the Slanské vrchy Mts. is an important factor in the formation of the river network asymmetries. Both the Neogene contact between the Slanské vrchy Hills neo-volcanites and the Toryská pahorkatina Upland and the neo-tectonics influenced the change in morphological parameters in the valley’s longitudinal and transverse profile and the Oľšava river bed. Our terrain works comprised length and width measurements of the bars, their positions in the river bed, the width and depth of the channel and the type of section riffle. Available maps enabled calculation of the following; ratio of valley height to width, average gradient of the section, stream gradient index, average channel segment slope, the degree of sinuosity and the highest observed correlation between slope, river segment type (0.9576) and the width and type river reach (−0.9089). High correlation coefficient values were recorded for the valley height and width ratio, the type of river section, the water area and the total river bed width and area.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barabas, D., & Tkáč, M. (2019). ANALYSING RIVERBED MORPHOLOGY AS A RESPONSE TO CHANGES OF GEOLOGICAL AND NEOTECTONIC CONDITIONS: A CASE STUDY OF THE OĽŠAVA RIVER. Quaestiones Geographicae, 38(3), 109–122. https://doi.org/10.2478/quageo-2019-0033
Section
Articles

References

  1. Anstead L., Barabas D., 2013. Hydromorfologický prieskum Váhu ako nástroj pre manažment vodných tokov na Slovensku. Geographical Journal 65(1): 61–81.
  2. Barabas D., 2008. Analýza priestorového rozšírenia akumulačných foriem v korytových úsekoch Bodvy. Geomorfologia Slovaca et Bohemica 8(1): 7–15.
  3. Barabas D., Bóna J., Klein D., Balážovičová L., 2017. Morphometric and geological conditions for sediment accumulation in the Udava River, Outer Carpathians, Slovakia. Journal of Geographical Sciences 27(8): 981–998. DOI: 10.1007/s11442-017-1416-2.
  4. Barabas D., Sýkorová J., 2007. Akumulačné formy v koryte toku Bodva a ich priestorové rozšírenie. Geomorphologica Slovaca et Bohemica 7(2): 58–64.
  5. Binder R., 1950. Zahrádzanie bystrín. Bratislava: Oráč.
  6. Brierley G., Fryirs, K., 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Victoria, Australia.
  7. Bull B.W., 2007. Tectonic geomorphology of mountains : a new approach to paleoseismology. Blackwell Publishing Ltd.
  8. Bull W.B., McFadden L.D., 1977. Tectonic geomorphology north and south of the Garlock Fault, California. In: D.O. Doehring (eds.), Geomorphology in arid regions. State University of New York at Binghamton: 115–138.
  9. Burbank W.D., Anderson S. D., 2001. Tectonic Geomorphology. Blackwell Publishing, Victoria, Australia.
  10. Crosby B.T., Whipple, K.X., 2006. Knickpoint initiation and distribution within fluvial networks; 236 waterfalls in the Waipaoa River, North Island New Zealand. Geomorphology 82: 16–38.
  11. Demoulin A., 1998. Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24: 189–208.
  12. Demoulin A., 2011. Basin and river profile morphometry: a new index with a high potential for relative dating of tectonic uplift. Geomorphology 126: 97–107.
  13. Dzurovčin L., 1989. Morfológia vulkanických telies v strednej časti Slanských vrchov. Geographical Journal 41(2): 226–233.
  14. Ferulík J., 1964. Lesotechnické úpravy na hornom Považí. In: Materiály ku konferencii o LTM. Zvolen: VÚLH.
  15. Hack J. T., 1973. Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey 1(4): 421–429.
  16. Holbrook J., Schumm S.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305: 287–306.
  17. Holčík J., Bastl I., 1976. Ecological effects of water level fluctuation upon the Fish population in the Danube river floodplain Czechoslovakia. Acta scientiarum naturalium, Brno 10(9): 1–46.
  18. Horton R. E., 1945. Erosional development of streams andtheir drainage basins, Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275–370.
  19. Jacques D.P., Salvador D.E., Machado R., Grohmann H.C., Nummer R.A., 2014. Application of morphometry in neotectonic studies at the eastern edge of the Paraná Basin, Santa Catarina State, Brazil. Geomorphology 213: 13–23. DOI: 10.1016/j.geomorph.12.037.
  20. Janočko J., 1984. Kvartérne sedimenty. In: Vysvetlivky ku geologickej mape ČSSR 1:25 000, list 38–131, Sečovce- 1. Archív GÚDŠ Košice.
  21. Janočko J., 1987. Kvartérne sedimenty západných svahov severnej časti Slanských vrchov a ich podhoria. MS. Archív GÚDŠ Košice.
  22. Kaličiak M., 1996. Geomorfologické členenie. In: M. Kalinčiak (eds.), Vysvetlivky ku geologickej mape Slanských vrchov a Košickej kotliny – Južná časť. Bratislava (GS SR): 8–11.
  23. Kaličiak M., Baňacký, V., Janočko J., Karoli S., Petro Ľ., Spišák S., Vozár J., Žec B., 1996. Geologická mapa Slanských vrchov a Košickej kotliny, Južná časť. Bratislava (GS SR).
  24. Kaličiak M., Jacko S., Janočko J., Karoli S., Molnár J., Petro Ľ., Spišák S., Vozár J., Žec B., 1991. Geologická mapa Slanských vrchov a Košickej kotliny, Severná časť. Bratislava (GÚDŠ).
  25. Karniš J., Kvitkovič J., 1970. Prehľad geomorfologických pomerov východného Slovenska. Bratislava (SNP).
  26. Kaszowski L., Krzemieň K. 1999. Classification systems of mountain river channels. Prace Geograficzne IG UJ 104, 27–40.
  27. Keller A. E., 1986. Investigation of Active Tectonics: Use of Surficial Earth Processes. The National Academy Press. Washington DC: 136–147.
  28. Kidová A., Lehotský M., Rusnák M., 2016. Geomorphic diversity in the Braided-wandering Belá River, Slovak Carpathians, as a response to flood variability and environmental changes. Geomorphology 272: 137–149. DOI: 10.1016/j.geomorph.2016.01.002.
  29. Koščo J., Lusk S., Halačka K., Lusková V., 2003. The expansion and occurrence of the Amur sleeper (Perccottus glenii) in eastern Slovakia. Folia Zoologica 52(3): 329–336.
  30. Košťálik J., 1988. Morfogenéza Slanských vrchov a jej význam pre ochranársku prax. XII. Východoslovenský tábor ochrancov prírody 1988. In: Prehľad odborných výsledkov. Prešov ONV odbor kultúry, Slovenský zväz ochrancov prírody a krajiny okresný výbor, Krajský ústav štátnej pamiatkovej starostlivosti a ochrany prírody: 10–24.
  31. Krešl J., 1959. Vliv lesnatosti povodí na odtok. Sborník ČSAV, Lesnictví, 7: 135–142.
  32. Lehotský M., 2004. Hodnotenia morfológie vodných tokov. Geomorphologia Slovaca IV(1): 36–47.
  33. Lehotský M., Grešková A., 2005. Základné klasifikačné systémy a morfometrické charakteristiky korytovo-nivných geosystémov. Geomorphologia Slovaca 1: 5–20.
  34. Leopold L.B., Wolman M.G., Miller J.P., 1964, Fluvial processes in geomorphology. W.H. Freeman, San Francisco.
  35. Lukniš M., 1972. Reliéf. In: M. Lukniš (eds.), Slovensko 2, Príroda. Vydavateľstvo Obzor Bratislava.
  36. Lukniš M., Mazúr E., Kvitkovič J., 1964. Geomorfologické pomery v rajóne VSŽ. In: K. Ivanička (eds.), Geografia regiónu Východoslovenských železiarní. Bratislava Actageol. geogr. Univ. Comen., Geographica 4: 48–57.
  37. Łyp M. 2012. Parametry morfometryczne zlewni i koryt rzecznych w badaniach systemu fluwialnego. In: K. Krzemień (eds.), Struktura koryt rzek i potoków – studium metodyczne. Instytut Geografi i Gospodarki Przestrzennej UJ, Kraków: 43–53.
  38. Maglay J., Halouzka R., Baňacký V., Pristaš J., Janočko J., 1999. Neotektonická mapa Slovenska 1:500,000. ŠGÚDŠ, MŽP SR, Bratislava.
  39. Maglay J., Moravcová M., Vlačiky M., Šefčík P., 2011. Prehľadná geologická mapa kvartéru Slovenskej republiky, M: 1:200,000. ŠGÚDŠ, MŽP SR, Bratislava.
  40. Mazúr E., 1963. Žilinská kotlina a priľahlé pohoria (Geomorfológia a kvartér). Bratislava, Vydavateľstvo Slovenskej akadémie vied.
  41. Mazúr E., Lukniš M., 1980. Geomorfologické členenie. In: E. Mazúr (eds.), Atlas SSR. Bratislava Veda: 54–55.
  42. Montgomery D.R., Buffington J.M., 1998. Channel processes, classification, and response. In: R. Naiman, R. Bilby, River Ecology and Management. New York, Springer-Verlag: 13–42.
  43. MZP [Ministerstvo Životného Prostredia], 2011. Predbežné hodnotenie povodňového rizika v čiastkovom povodí Hornádu. Online: http://www.minzp.sk/files/sekcia-vod/hornad-prilohy.pdf (accessed 4.03.2015).
  44. Pišút P., Tomčíková I., 2008. Rekonštrukcia vývoja rieky Smrečianky v jej odozvovej zóne podľa historických máp. Geographia Cassoviensis. 2 (1): 122–127.
  45. Pospíšil L., Husák Ľ., 1985. Príspevok geofyziky k poznaniu stavby východoslovenských neovulkanitov a ich podložia. Západné Karpaty – Geológia 10. Bratislava GÚDŠ.
  46. Riggs H. C., 1978. Streamflow characteristics from channel size. Am. Soc. Civil Eng., Journal Hydraulics Div. 104(HY1): 87– 96.
  47. Rosgen D. L., 1994. Classification od natural rivers. Catena 22: 169–199.
  48. Roy S., Sahu A.S., 2015. Quaternary tectonic control on channel morphology over sedimentary low land: A case study in the Ajay-Damodar interfluve of Eastern India. Geoscience Frontiers 6(6): 927–946.
  49. Schumm S.A., 1977. The Fluvial System. John Wiley and Sons, New York.
  50. Schumm S.A., Lichty R.W., 1965. Time, Space and Causality in Geomorphology. American Journal of sciences 263: 110–119.
  51. Škarpich V., Hradecký J., 2013. Water management of beskidian gravel-bed streams in the Morávka River basin. Acta Musei Beskidensis 5: 5–12.
  52. Škarpich V., Hradecký J., Dušek R., 2013. Complex transformation of the geomorphic regime of channels in the forefield of the Moravskoslezské Beskydy Mts. Case study of the Morávka River (Czech Republic). Catena, 111: 25–40.
  53. Zámolyi Z., Székely B., Draganits E., Timár G., 2010. Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorphology 122: 231–243. DOI: 10.1016/j.geomorph.2009.06.028.
  54. Zuchiewicz W., 1998. Quaternary tectonics ofthe Outer West Carpathians, Poland. Tectonophysics 297: 121–132.