SPATIAL-TEMPORAL DYNAMICS LAND USE/LAND COVER CHANGE AND FLOOD HAZARD MAPPING IN THE UPSTREAM CITARUM WATERSHED, WEST JAVA, INDONESIA

Main Article Content

Fajar Yulianto
Suwarsono Suwarsono
Udhi Catur Nugroho
Nunung Puji Nugroho
Wismu Sunarmodo
Muhammad Rokhis Khomarudin

Abstract

This study presents the information on the dynamics of changes in land use/land cover (LULC) spatially and temporally related to the causes of flooding in the study area. The dynamics of LULC changes have been derived based on the classification of Landsat imagery for the period between 1990 and 2016. Terrain surface classification (TSC) was proposed as a micro-landform classification approach in this study to create flood hazard assessment and mapping that was produced based on the integration of TSC with a probability map for flood inundation, and flood depth information derived from field observation. TSC as the micro-landform classification approach was derived from SRTM30 DEM data. Multi-temporal Sentinel-1 data were used to construct a pattern of historical inundation or past flooding in the study area and  also to produce the flood probability map. The results of the study indicate that the proposed flood hazard mapping (FHM) from the TSC as a micro-landform classification approach has the same pattern with the results of the integration of historical inundation or previous floods, as well as field investigations in the study area. This research will remain an important benchmark for planners, policymakers and  researchers regarding spatial planning in the study area. In addition, the results can provide important input for sustainable land use plans and strategies for mitigating flood hazards.

Downloads

Download data is not yet available.

Article Details

How to Cite
Yulianto, F., Suwarsono, S., Nugroho, U. C., Nugroho, N. P., Sunarmodo, W., & Khomarudin, M. R. (2020). SPATIAL-TEMPORAL DYNAMICS LAND USE/LAND COVER CHANGE AND FLOOD HAZARD MAPPING IN THE UPSTREAM CITARUM WATERSHED, WEST JAVA, INDONESIA. Quaestiones Geographicae, 39(1), 125–146. https://doi.org/10.2478/quageo-2020-0010
Section
Articles

References

  1. Afshari S., Tavakoly A.A., Rajib M.A., Zheng X., Follum M.L., Omranian E., Fekete B.M., 2018. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. Journal of Hydrology 556: 539–556. Doi: 10.1016/j.jhydrol.2017.11.036.
  2. Alexakis D.D., Grillakis M.G., Koutroulis A.G., Agapiou A., Themistocleous K., Tsanis I.K., Michaelides S., Pashiardis S., Demetriou C. , Aristeidou K. , Retalis A. , Tymvios F., Hadjimitsis D.G., 2014. GIS and remote sensing techniques for assessment of land use change impact on hydrology: The case study of Yialis Basin in Cyprus. Natural Hazards and Earth System Science 14: 413–426.
  3. Apip, Takara K., Yamashiki Y., Ibrahim A.B., 2010. Assessment of spatially-distributed sediment budget and potential shallow landslide area for investment prioritization in sediment control of engaged catchment: A case study on the upper Citarum river, Indonesia. Annuals of Disaster Prevention Research Institute, Kyoto University 53B: 45–59.
  4. Armenteras D., Murcia U., González T.M., Barón O.J., Arias J.E., 2019. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecology and Conservation 17: e00567. Doi: 10.1016/j.gecco.2019.e00567.
  5. Bajabaa S., Masoud M., Al-Amri N., 2013. Flash Flood Hazard Mapping Based on Quantitative Hydrology, Geomorphology and GIS Techniques (Case Study of Wadi Al Lith, Saudi Arabia). Arab Journal of Geosciences 7: 2469–2481. Doi: 10.1007/s12517-013-0941-2.
  6. Bass B., Bedient P., 2018. Surrogate modeling of joint flood risk across coastal watersheds. Journal of Hydrology 558: 159–173. Doi: 10.1016/j.jhydrol.2018.01.014.
  7. Beretta R., Ravazzani G., Maiorano C., Mancini M., 2018. Simulating the influence of buildings on flood inundation in urban areas. Geosciences 8(2): 77. Doi: 10.3390/geosciences8020077.
  8. Birhanu A., Masih I., van der Zaag P., Nyssen J., Cai X., 2019. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Physics and Chemistry of the Earth, Parts A/B/C. Doi: 10.1016/j.pce.2019.01.006.
  9. Bosch J.M., Hewlett J.D., 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology 55: 3–23.
  10. Botai C.M., Botai J.O., De Wit J.P., Ncongwane K.P., Adeola A.M., 2017. Drought Characteristics over the Western Cape Province, South Africa. Water 9: 876.
  11. Burrough P.A., van Gaans P.F.M., MacMillan R.A., 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and Systems 113: 37–52.
  12. Chakravarty P., Manoj Kumar M., 2019. Chapter 6 – Floral Species in Pollution Remediation and Augmentation of Micrometeorological Conditions and Microclimate: An Integrated Approach, Phytomanagement of Polluted Sites, Elsevier: 203–219. Doi: 10.1016/B978-0-12-813912-7.00006-5.
  13. Coates D.R. 1958. Quantitative geomorphology of small drainage basins in Southern Indiana. 1st Edn. New York: Columbia University.
  14. Collier Ch.G., 2016. Hydrometeorology. Wiley Blackwell.
  15. Dang A.T.N., Kumar L., 2017. Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: A case study of District 8, Ho Chi Minh city, Vietnam. Geomatics, Natural Hazards and Risk 8(2): 1792–1811. Doi: 10.1080/19475705.2017.1388853.
  16. Dasanto B.D., Boer R., Pramudya B., Suharnoto Y., 2014. Simple method for assessing spread of flood prone areas under historical and future rainfall in the upper Citarum watershed. Environment Asia 7(2): 79–86.
  17. Dewan A.M., Yamaguchi Y., 2009a. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography 29(3): 390–401. Doi: 10.1016/j.apgeog.2008.12.005.
  18. Dewan A.M., Yamaguchi Y., 2009b. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environmental Monitoring and Assessment 150(1–4): 237–249. Doi: 10.1007/s10661-008-0226-5.
  19. Diakakis M., 2010. A method for flood hazard mapping based on basin morphometry: Application in two catchments in Greece. Natural Hazards 56(3): 803–814. Doi: 10.1007/s11069-010-9592-8.
  20. Drăguţ L., Eisank C., 2012. Automated object-based classification of topography from SRTM data. Geomorphology 141–142: 21–33.
  21. Ehsani A.H., Quiel F., 2008. Geomorphometric feature analysis using morphometric parameterization and artificial neural networks. Geomorphology 99: 1–12.
  22. Evans I.S. 1972. General geomorphometry, derivatives of altitude and descriptive statistics. In: R.J.Chorley (ed.), Spatial Analysis in Geomorphology, New York: Harper and Row Publishers: 17–90.
  23. Fu Q., Shi R., Li T., Sun Y., Liu D., Cui S., Hou R., 2019. Effects of land-use change and climate variability on streamflow in the Woken River basin in Northeast China. River Research and Applications 35(2): 121–132. Doi: 10.1002/rra.3397.
  24. Godfrey A., Ciurean R.L., van Westen C.J., Kingma N.C., Glade T., 2015. Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach – An application in Nehoiu Valley, Romania. International Journal of Disaster Risk Reduction 13: 229–241. Doi: 10.1016/j.ijdrr.2015.06.001.
  25. Gorum T., Gonencgil B., Gokceoglu C., Nefeslioglu H.A., 2008. Implementation of Reconstructed Geomorphologic Units in Landslide Mapping. Natural Hazards 46: 323–351.
  26. Goudie A.S. (ed.), 2004. Encyclopedia of Geomorphology. Routledge Taylor and Francis Group, New York.
  27. Grabs T., Seibert J., Bishop K., Laudon H., 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology 373(1–2): 15–23. Doi: 10.1016/j.jhydrol.2009.03.031.
  28. Guisan A., Weiss S.B., Weiss A.D., 1999. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology 143: 107–122.
  29. Hannan M.F.I., 2017. Risk assessment and disaster mitigation directions flood in the Bandung basin area. MS. Bogor Agriculture University (IPB), Indonesia.
  30. Ho L.T.K., Umitsu M., 2011. Micro-landform classification and flood hazard assessment of the Thu Bon alluvial plain, central Vietnam via an integrated method utilizing remotely sensed data. Applied Geography 31(3): 1082–1093. Doi: 10.1016/j.apgeog.2011.01.005.
  31. Ho L.T.K., Umitsu M., Yamaguchi Y., 2010. Flood hazard mapping by satellite images and SRTM DEM in the Vugia – Thu Bon alluvial plain, central Vietnam. International archive of the photogrammetry, remote sensing and spatial information sciences XXXVIII(8). Kyoto, Japan.
  32. Horton R.E., 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56: 275–370.
  33. Huang X., Wang L., Yang L., Kravchenko A.N., 2008. Management effects on relationships of crop yields with topography represented by wetness index and precipitation. Agronomy Journal 100(5): 1463. Doi: 10.2134/agronj2007.0325.
  34. Hudalah D., Winarso H., Woltjer J., 2010. Planning by opportunity: An analysis of periurban environmental conflicts in Indonesia. Environment & Planning A 42(9): 2254–2269.
  35. Huggett R.J., 2011. Fundamentals of Geomorphology. Routledge Taylor and Francis Group, New York.
  36. Inglezakis V.J., Poulopoulos S.G., Arkhangelsky E., Zorpas A.A., Menegaki A.N., 2016. Chapter 3 – Aquatic Environment, Environment and Development, Elsevier: 137–212, Doi: 10.1016/B978-0-444-62733-9.00003-4.
  37. Irvin B.J., Ventura S.J., Slater B.K., 1997. Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77: 137–154.
  38. Iwahashi J., Pike R.J., 2007. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3–4): 409–440. Doi: 10.1016/j.geomorph.2006.09.012.
  39. Jasiewicz J., Stepinski T.F., 2013. Geomorphons – a pattern recognition approach to classification and mapping of landforms. Geomorphology 182: 147–156. Doi: 10.1016/j. geomorph.2012.11.005.
  40. Kartiwa B., Murniati E., Bormudoi A., 2013. Application of hydrological model, RS and GIS for flood mapping of citarum watershed, West Java Province, Indonesia. Journal of Remote Sensing Technology 1(1): 1–8.
  41. Kittler J., Illingworth J., 1986. Minimum error thresholding. Pattern Recognition 19(1): 41–47. Doi: 10.1016/0031-3203(86)90030-0.
  42. Lambin E.F., 1997. Modeling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography 21(3): 375–393.
  43. Langhammer J., Vacková T., 2018. Detection and mapping of the geomorphic effects of flooding using UAV photogrammetry. Pure and Applied Geophysics 175(9): 3223–3245. Doi: 10.1007/s00024-018-1874-1.
  44. Lastra J, Fernández E., Díez-Herrero A., Marquínez J., 2008. Flood hazard delineation combining geomorphological and hydrological methods: An example in the Northern Iberian Peninsula. Natural Hazards 45: 277–293.
  45. Lopez E., Bocco G., Mendoza M., Duhau E., 2001. Predicting land cover and land use change in the urban fringe a case in Morelia City, Mexico. Landscape and Urban Planning 55(4): 271–285.
  46. Marshall S.J., 2013. Hydrology. Reference Module in Earth Systems and Environmental Sciences. Doi: 10.1016/B978-0-12-409548-9.05356-2
  47. Marshall S.J., 2014. The Water Cycle. Reference Module in Earth Systems and Environmental Sciences. Doi: 10.1016/B978-0-12-409548-9.09091-6.
  48. Mergili M., Emmer A., Juřicová A., Cochachin A., Fischer J.T., Huggel C., Pudasaini S.P., 2018. How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms 43(7): 1373–1389. Doi: 10.1002/esp.4318.
  49. Motevalli A., Vafakhah M., 2016. Flood hazard mapping using synthesis hydraulic and geomorphic properties at watershed scale. Stochastic Environmental Research and Risk Assessment 30(7): 1889–1900. Doi: 10.1007/s00477-016-1305-8.
  50. Muharomah R., 2014. Analisis run-off sebagai dampak perubahan lahan sekitar pembangunan underpass Simpang Patal Palembang dengan memanfaatkan teknik GIS. Jurnal Teknik Sipil and Lingkungan 2(3): 424–433.
  51. Mulyo A., Haryanto A.D., Trirahardjo S., 2018. Korelasi hidrologi dan intensitas curah hujan daerah aliran sungai Cikapundung: suatu pemahaman untuk mitigasi banjir di Kasawan Cekungan Bandung. Laporan Kemajuan Riset Kompetensi Dosen UNPAD.
  52. Narasimhan T.N., 2009. Hydrological Cycle and Water Budgets, Encyclopedia of Inland Waters, Academic Press: 714–720. Doi: 10.1016/B978-012370626-3.00010-7.
  53. Narulita I., Rahmat A., Maria R., 2008. Geographic information system application for determining regions rehabilitation priorities in the Bandung Basin. Journal of Geology and Mining Research 18(1): 23–35.
  54. Nurjaman A. (2018). Utilization of geographic information systems mapping of village areas in the area flow of Citarum river at Bandung district. MS. Bogor Agriculture University (IPB).
  55. Olaya V., Conrad O., 2009. Geomorphometry in SAGA. In: T.Hengl, H.I.Reuter (eds.), Geomorphometry: Concepts, software, applications, Developments in Soil Science 33: 293– 308. Doi: 10.1016/s0166-2481(08)00012-3.
  56. Oya M., 2002. Applied geomorphology for mitigation of natural hazards. Natural Hazards 25(1): 17–25.
  57. Panizza M., 1986. Environmental Geomorphology. Amsterdam: Elsevier.
  58. Ramalingan S., Liu ZQ., Iourinski D., 2006. Curvature-based fuzzy surface classification. IEEE Transactions on Fuzzy Systems 14(4): 573–589.
  59. Requena A.I., Flores I., Mediero L., Garrote L. 2015. Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model. Stochastic Environmental Research and Risk Assessment 30(5): 1363–1378. Doi: 10.1007/s00477-015-1138-x.
  60. Righini M., Surian N., Wohl E., Marchi L., Comiti F., Amponsah W., Borga M., 2017. Geomorphic response to an extreme flood in two Mediterranean rivers (northeastern Sardinia, Italy): Analysis of controlling factors. Geomorphology 290: 184–199. Doi: 10.1016/j.geomorph.2017.04.014.
  61. Rimal B., Zhang L., Stork N., Sloan S., Rijal S., 2018. Urban expansion occurred at the expense of agricultural lands in the Tarai region of Nepal from 1989 to 2016. Sustainability 10: 1341.
  62. Rosyidie A., 2013. Flood: Facts and effects, and the effects of land use change. Journal of Urban and Regional Planning 24(3): 241–249.
  63. Ruffell A., McKinley J., 2014. Forensic geomorphology. Geomorphology 206: 14–22. Doi: 10.1016/j.geomorph.2013.12.020.
  64. Samela C., Troy T.J., Manfreda S., 2017. Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Advances in Water Resources 102: 13–28. Doi: 10.1016/j.advwatres.2017.01.007.
  65. Schillaci C., Braun A., Kropáček J., 2015. Terrain analysis and landform recognition. In: L.Clarke, J.Nield, Geomorphological techniques, chap. 2, 4.2. Doi: 10.13140/RG.2.1.3895.2802.
  66. Srivastava P.K., Han D., Rico-Ramirez M.A., Islam T., 2013. Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrological Processes 28(15): 4419– 4432. Doi: 10.1002/hyp.9946.
  67. Strahler A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38(6): 913–920. Doi: 10.1029/tr038i006p00913.
  68. Szwagrzyk M., Kaim D., Price B., Wypych A., Grabska E., Kozak J., 2018. Impact of forecasted land use changes on flood risk in the Polish Carpathians. Natural Hazards 94: 227–240. Doi: 10.1007/s11069-018-3384-y.
  69. Tagil S., Jenness J., 2008. GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. Journal of Applied Sciences 8: 910–921.
  70. Twele A., Cao W., Plank S., Martinis S., 2016. Sentinel-1-based flood mapping: A fully automated processing chain. International Journal of Remote Sensing 37(13): 2990–3004. Doi: 10.1080/01431161.2016.1192304
  71. Verstappen, H.Th., 1983. Applied Geomorphology: Geomorphological Surveys for Environmental Development. Amsterdam: Elsevier.
  72. Wan R., Yang G., 2007. Influence of land use/cover change on storm runoff—a case study of Xitiaoxi River Basin in upstream of Taihu Lake watershed. Chinese Geographical Science 17(4): 349–356.
  73. Warburton M.L., Schulze R.E., Jewitt G.P.W., 2012. Hydrological impacts of land use change in three diverse South African catchments. Journal of Hydrology 414–415: 118–135.
  74. Weiss A.D. 2001. Topographic position and landforms analysis. ESRI Users Conference, San Diego, CA, USA.
  75. Wilson J.P., Gallant J.C., 2000. Primary topographic attributes. In: J.P.Wilson, J.C.Gallant (eds.), Terrain analysis: Principles and applications, John Wiley & Sons, New York: 51–85.
  76. Yang L., Chen L., Wei W., 2015. Effects of vegetation restoration on the spatial distribution of soil moisture at the hill slope scale in semi-arid regions. Catena 124: 138–146. Doi: 10.1016/j.catena.2014.09.014.
  77. Yang W., Long D., Bai P., 2019. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology 570: 201–219. Doi: 10.1016/j.jhydrol.2018.12.055.
  78. Yucel I., Onen A., Yilmaz K.K., Gochis D.J., 2015. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology 523: 49–66. Doi: 10.1016/j.jhydrol.2015.01.042.
  79. Yulianto F., Maulana T., Khomarudin M.R., 2018. Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model, in the upstream Citarum Watershed, West Java, Indonesia. International Journal of Digital Earth 12(10): 1151–1176. Doi: 10.1080/17538947.2018.1497098.
  80. Yulianto F., Sofan P., Zubaidah A., Sukowati K.A.D., Pasaribu J.M., Khomarudin M.R., 2015. Detecting areas affected by flood using multi-temporal ALOS PALSAR remotely sensed data in Karawang, West Java, Indonesia. Natural Hazards 77(2): 959–985. Doi: 10.1007/s11069-015-1633-x.
  81. Yulianto F., Suwarsono S., Sulma S., 2019. Improving the accuracy and reliability of land use/land cover simulation by the integration of Markov cellular automata and landform-based models – a case study in the upstream Citarum watershed, West Java, Indonesia. Journal of Degraded and Mining Lands Management 6(2): 1675–1696. Doi: 10.15243/jdmlm.2019.062.1675.
  82. Zhang B.P., Yao Y.H., Cheng W.M., Zhou C.H., Lu Z., Chen X.D., 2002. Human-induced changes to biodiversity and alpine pastureland in the Bayanbulak Region of the East Tianshan Mountains. Mountain Research and Development 22: 1–7.