TOPOGRAPHIC CORRECTION OF LAPAN-A3/LAPAN-IPB MULTISPECTRAL IMAGE: A COMPARISON OF FIVE DIFFERENT ALGORITHMS

Main Article Content

Zylshal Zylshal

Abstract

Reflectance variability in mountainous regions caused by steep slopes can decrease the accuracy of landcover mapping. Topographic correction aims to reduce this effect, and various techniques have been proposed to conduct such correction on satellite imagery. This paper presents the initial results of five different topographic correction techniques applied to LAPAN-A3 multispectral images, namely cosine correction, improved cosine correction, Minnaert correction, modified Minnaert correction and two-stage normalization. The widely-available ALOS World 3D 30 meter DEM was employed, with the evaluation made in a mountainous area in South Sulawesi, Indonesia, located in an ancient volcanic region, with slopes ranging from 0 to 60 degrees. The slope aspect was almost equally distributed in all directions. Visual and statistical analysis was conducted before and after the topographic correction to evaluate the results. Standard deviation (SD) and the coefficient variation (CV) were calculated; the results show that the topographic corrections were able to reduce the effect of shadows and relief. Minnaert correction proved to be the best method in terms of visual appearance and spectral variability reduction.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zylshal, Z. (2020). TOPOGRAPHIC CORRECTION OF LAPAN-A3/LAPAN-IPB MULTISPECTRAL IMAGE: A COMPARISON OF FIVE DIFFERENT ALGORITHMS. Quaestiones Geographicae, 39(3), 33–45. https://doi.org/10.2478/quageo-2020-0021
Section
Articles

References

  1. Balthazar V., Vanacker V., Lambin E. F., 2012. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas [online]. International Journal of Applied Earth Observation and Geoinformation. Elsevier B.V. DOI 10.1016/j.jag.2012.03.010.
  2. Civco D. L., 1989. Topographic Normalization of Landsat Thematic Mapper Digital Imagery. Photogrammetric Engineering and Remote Sensing 55(9): 1303–1309.
  3. Colby J. D., 1991. Topographic normalization in rugged terrain. Photogrammetric Engineering & Remote Sensing 57(5): 531–537.
  4. Fan W., Li J., Liu Q., Zhang Q., Yin G., Li A., Zeng Y., Xu B., Xu X., Zhou G., Du H., 2018. Topographic correction of forest image data based on the canopy reflectance model for sloping terrains in multiple forward mode. Remote Sensing 10(5) 717.
  5. Gao M., Gong H., Zhao W., Chen B., Chen Z., Shi M., 2016. An improved topographic correction model based on Minnaert. GIScience and Remote Sensing 53(2): 247–264.
  6. Gao M., Zhao W., Gong Z., Gong H., Chen Z., Tang X., 2013. Topographic Correction of Zy-3 Satellite Image and Its Effects on Estimation of Shrubs Leaf Biomass in Mountainous Area. International Symposium on Satellite Mapping Technology and Application (ISSMTA2013), WG I/5, WG I/4: 50–59.
  7. Gao Y., Zhang W., 2009a. LULC classification and topographic correction of Landsat-7 ETM+ Imagery in the Yangjia river Watershed: The influence of DEM resolution. Sensors 9(3): 1980–1995.
  8. Gao Y., Zhang W., 2009b. A simple empirical topographic correction method for ETM + imagery. International Journal of Remote Sensing 30(9): 2259–2275.
  9. Ghasemi N., Mohammadzadeh A., Sahebi M. R., 2011. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area. International Journal of Digital Earth 6(5): 504–520. DOI 10.1080/17538947.2011.625049.
  10. Gu D., Gillespie A., 1998. Topographic normalization of Landsat TM images of forest based on subpixel Sun-canopy-sensor geometry. Remote Sensing of Environment 64(2): 166–175.
  11. Hakim P. R., Hasbi W., Syafrudin A. H., 2014. ADCS requirements of Lapan-A3 satellite based on image geometry analysis. Proceeding - ICARES 2014: 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology: 142–146.
  12. Hakim P. R., Permala R., 2017. Analysis of LAPAN-IPB image lossless compression using differential pulse code modulation and huffman coding. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 012096. Online: stacks.iop.org/1755-1315/54/i=1/a=012096?key=crossref.1a61d1a04f592578ef866b¬15f20559b9 (Accessed 6 March 2017).
  13. Hakim P. R., Syafrudin A. H., Utama S., 2017. Band Co-registration Distortion Modeling of LAPAN-A3 Multispectral Imager Based on Satellite Attitude. The 4th International Symposium on LISAT 2017.
  14. Hantson S., Chuvieco E., 2011. Evaluation of different topographic correction methods for landsat imagery. International Journal of Applied Earth Observation and Geoinformation 13(5): 691–700. DOI 10.1016/j.jag.2011.05.001.
  15. Hasbi W., Suhermanto 2013. Development of LAPAN-A3 / IPB Satellite an Experimental Remote Sensing Microsatellite. In: 34th Asian Conference on Remote Sensing 2013. Online: a-a-r-s.org/acrs/index.php/acrs/acrs-overview/proceedings-1?view=publication&task=show&id=1365.
  16. Holben B. N., Justice C.O., 1980. The Topographic Effect on Spectral Response from Nadir-Pointing Sensors. Photogrammetric Engineering & Remote Sensing 46: 1191–1200.
  17. Itten K. I., Meyer P., 1993. Geometric and Radiometric Correction of TM Data of Mountainous Forested Areas. IEEE Transactions on Geoscience and Remote Sensing 31(4): 764–770.
  18. Japan Aerosapce Exploration Agency, E. O. R. C., 1997. ALOS Global Digital Surface Model ‘ALOS World 3D – 30m (AW3D30)’ – Product Description. Japan Aerospace Exploration Agency. Online: www.eorc.jaxa.jp/ALOS/en/aw3d30/.
  19. JAXA, 2017. ALOS Global Digital Surface Model (DSM) “ALOS World 3D-30m” (AW3D30) Dataset Product Format Description Earth Observation Research Center ( EORC ), Japan Aerospace Exploration Agency (JAXA).
  20. Jensen J. R., 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Ed. Pearson Education.
  21. Judianto C. T., Nasser E. N., 2015. The Analysis of LAPAN-A3/IPB Satellite Image Data Simulation Using High Data Rate Modem. Procedia Environmental Sciences 24: 285–296. DOI 10.1016/j.proenv.2015.03.037.
  22. Justice C. O., Wharton S. W., Holben B. N., 1981. Application of digital terrain data to quantify and reduce the topographic effect on landsat data. International Journal of Remote Sensing 2(3): 213–230.
  23. Kawata Y., Ueno S., Kusaka T., 1988. Radiometric correction for atmospheric and topographic effects on landsat mss images. International Journal of Remote Sensing 9(4): 1–2.
  24. Kobayashi S., Sanga-Ngoie K., 2008. The integrated radiometric correction of optical remote sensing imageries. International Journal of Remote Sensing 29 (20): 5957–5985.
  25. Law K. H., Nichol J., 2004. Topographic correction for differential illumination effects on ikonos satellite imagery. XXth ISPRS Congress, XXXV Part: 641–646.
  26. Li M., Im J., Beier C., 2013. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience and Remote Sensing 50(4): 361–384.
  27. Minnaert M., 1941. The reciprocity principle in lunar photometry. The Astrophysical Journal 93(2): 403–410.
  28. Mishra V. D., Sharma J. K., Singh K. K., Thakur N. K., Kumar M., 2009. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain. Journal of Earth System Science 118(1): 11–26.
  29. Nichol J., Hang L. K., 2013. The Influence of DEM Accuracy on Topographic Correction of Ikonos Satellite Images. Photogrammetric Engineering & Remote Sensing 74(1): 47–53.
  30. Nugroho J. T., Zylshal Z., Kushardono D., 2018. LAPAN-A3 Satellite Data Analysis for Land Cover Classificationb (Case Study: Toba Lake Area, North Sumatra). International Journal of Remote Sensing and Earth Sciences 15(1): 71–80.
  31. Parker J. A, Kenyon R. V. and Troxel D. E., 1983. Comparison of interpolation methods for image resampling. IEEE Transactions on Medical Imaging 2(1): 31–39.
  32. Phiri D., Morgenroth J., Xu C., Hermosilla T., 2018. Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. International Journal of Applied Earth Observation and Geoinformation 73: 170–178.
  33. Pimple U., Sitthi A., Simonetti D., Pungkul S., Leadprathom K., Chidthaisong A., 2017. Topographic correction of Landsat TM-5 and Landsat OLI-8 imagery to improve the performance of forest classification in the mountainous terrain of Northeast Thailand. Sustainability 9(2): 1–26.
  34. Riaño D., Chuvieco E., Salas J., Aguado I., 2003. Assessment of different topographic corrections in landsat-TM data for mapping vegetation types (2003). IEEE Transactions on Geoscience and Remote Sensing 41 (5 PART 1): 1056–1061.
  35. Richards J. A., 1995. Remote Sensing Digital Image Analysis. Berlin/Heidelberg: Springer-Verlag. Online: link.springer.com/10.1007/978-3-642-30062-2 (Accessed 19 September 2017).
  36. Richter R., 1997. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. International Journal of Remote Sensing 18(5): 1099–1111.
  37. Richter R., Kellenberger T., Kaufmann H., 2009. Comparison of topographic correction methods. Remote Sensing 1(3): 184–196.
  38. Roza W., Amin D. E., Nasser E. N., 2014. Design And Implementation of Payload Data Handling Based on Field Programmable Gate Array. In: 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES) Design. Yogyakarta, Indonesia: IEEE: 48–54.
  39. Setiawan Y., Prasetyo L. B., Pawitan H., Liyantono L., Syartinilia S., Wijayanto A. K., Permatasari P. A., Syafrudin A. H., Hakim P. R., 2018. Pemanfaatan Fusi Data Satelit Lapan-a3/Ipb Dan Landsat 8 Untuk Monitoring Lahan Sawah. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 8(1): 67–76.
  40. Shao Y., Li G. L., Guenther E., Campbell J. B., 2015. Evalua¬tion of Topographic Correction on Subpixel Impervious Cover Mapping with CBERS-2B Data. IEEE Geoscience and Remote Sensing Letters 12(8): 1675–1679.
  41. Soenen S. A., Peddle D. R., Coburn C. A., Hall R. J., Hall F. G., 2008. Improved topographic correction of forest image data using a 3-D canopy reflectance model in multiple forward mode. International Journal of Remote Sensing 29(4): 1007–1027.
  42. Tahir A. M., Hakim P. R., Syafruddin A. H., Cagak J., Km S., Indonesia B., 2016. Image-Focusing Quality Improvement on Lapan-A3 Satellite Multispectral Imager. Jurnal Teknologi Dirgantara 14(1): 37–50.
  43. Takaku J., Tadono T., 2017. Quality updates of ‘AW3D’ global DSM generated from ALOS PRISM. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS): 5666–5669.
  44. Takaku J., Tadono T., Tsutsui K., Ichikawa M., 2016. Validation of ‘Aw3D’ Global Dsm Generated From Alos Prism. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III–4 (July): 25–31.
  45. Teillet P. M., Guindon B., Goodenough D. G., 1982. On the slope-aspect correction of multispectral scanner data. Canadian Journal of Remote Sensing 8(2): 84–106.
  46. Triharjanto R. H., Nur Ubay M. S., Utama S., Poetro R. E., 2016. Evaluation of attitude dynamic module on LAPAN-ITB micro-satellite simulator. In: Proceedings of the 2015 IEEE International Conference on Aerospace Electronics and Remote Sensing, ICARES 2015. Bali, Indonesia: IEEE.
  47. Vanonckelen S., Lhermitte S., Balthazar V., Van Rompaey A., 2014. Performance of atmospheric and topographic correction methods on Landsat imagery in mountain areas. International Journal of Remote Sensing 35(13): 4952–4972.
  48. Vanonckelen S., Lhermitte S., Van Rompaey A., 2013. The effect of atmospheric and topographic correction methods on land cover classification accuracy. International Journal of Applied Earth Observation and Geoinformation 24(1): 9–21. DOI 10.1016/j.jag.2013.02.003.
  49. Vázquez-Jiménez R., Romero-Calcerrada R., Ramos-Bernal R., Arrogante-Funes P., Novillo C., 2017. Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS + C Method in Mountainous Forest Areas. ISPRS International Journal of Geo-Information 6(9): 287.
  50. Vincini M., Frazzi E., 2003. Multitemporal Evaluation of Topographic Normalization Methods on Decidous Forest TM Data. IEEE Transactions on Geoscience and Remote Sensing 41(11): 2586–2590.
  51. Wu J., Bauer M. E., Wang D., Manson S. M., 2008. A comparison of illumination geometry-based methods for topographic correction of QuickBird images of an undulant area. ISPRS Journal of Photogrammetry and Remote Sensing 63(2): 223–236.
  52. Zhang W., Gao Y., 2011. Topographic correction algorithm for remotely sensed data accounting for indirect irradiance. International Journal of Remote Sensing 32(7): 1807–1824.
  53. Zylshal Z., 2019. Performance evaluation of different DEMs for topographic correction on LAPAN-A3: preliminary results. In: Sixth Geoinformation Science Symposium SPIE: 159–167.
  54. Zylshal Z., Sari N. M. N. M., Nugroho J. T. J. T., Kushardono D., 2017. Comparison of Spectral Characteristic between LAPAN-A3 and Sentinel-2A. IOP Conference Series: Earth and Environmental Science 98(1): 012051.
  55. Zylshal Z., Wirawan R. R., Kushardono D., 2018. Assessing the Potential of LAPAN-A3 Data for Landuse/landcover Mapping. Indonesian Journal of Geography 50(2): 184–196. DOI 10.22146/ijg.31449.