EXPLORING THE ROLE OF SOCIO-ECONOMIC AND BUILT ENVIRONMENT DRIVING FACTORS IN SHAPING THE COMMUTING MODAL SHARE: A PATH-ANALYSIS-BASED APPROACH

Main Article Content

Soufiane Boukarta
Ewa Berezowska-Azzag

Abstract

This paper explores the role of the built environment and socio-economic drivers in shaping the modal share of commuting. For this, we have identified through our literature review 67 potential variables categorised into two groups; the built environment and the households’ socio-economic characteristics. We have considered the city of Djelfa as a case study and used the questionnaire as a data collection tool. The questionnaire processing of the 700 questionnaires provided to the households allowed us to select 184 questionnaires for our analysis. The sensitivity analysis protocol is designed for two stages; (i) an exploratory stage, conducted by principal component analysis and bivariate correlation analysis; (ii) and a confirmatory stage conducted by a path analysis. The first step allowed us to hypothesise several causal pathways that could explain, directly or indirectly, the modal share of commuting. The results of the path analysis show that the modal shares of walking, private car and public transit are controlled by 13, 16 and 12 explanatory variables, respectively. Overall, the socio-economic characteristics of households discourage walking and transit use, and encourage private car commuting. On the other hand, the variables identified in this paper related to the built environment discourage walking, but encourage the use of public transit rather than private cars for commuting.

Downloads

Download data is not yet available.

Article Details

How to Cite
Boukarta, S., & Berezowska-Azzag, E. (2020). EXPLORING THE ROLE OF SOCIO-ECONOMIC AND BUILT ENVIRONMENT DRIVING FACTORS IN SHAPING THE COMMUTING MODAL SHARE: A PATH-ANALYSIS-BASED APPROACH. Quaestiones Geographicae, 39(4), 87–107. https://doi.org/10.2478/quageo-2020-0032
Section
Articles

References

  1. Acker V., Witlox F., 2010. Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography 18(1): 65–74.
  2. APRUE, The National Agency for the Promotion and Rationalisation of Energy Use, 2014. The national energy situation in 2012.
  3. APRUE, The National Agency for the Promotion and Rationalisation of Energy Use, 2017. The national energy situation in 2015.
  4. APRUE, The National Agency for the Promotion and Rationalisation of Energy Use, 2015. The national energy situation in 2013.
  5. APRUE, The National Agency for the Promotion and Rationalisation of Energy Use, 2007. The national energy situation in 2005.
  6. Bakour M., 2016. La mobilité urbaine et la planification des réseaux de transport dans une logique de renouvellement urbain, le casd’Alger, PHD dissertation, EPAU.
  7. Banister D., Newson C., Ledbury M., 2007. The costs of transport on the environment – the role of teleworking in reducing carbon emissions. Transport Studies Unit, Oxford University. Online: http://www.tsu.ox.ac.uk/pubs/1024-banister-etal.pdf (accessed: December 2017).
  8. Baouni T., Bakour M., Berchache R., 2013. Effets de la multi-modalité à Alger sur la mobilité des usagers. Insaniyat/تايناسنإ . Revue algérienne d’anthropologie et de sciences sociales 62: 45–69.
  9. Benslimane M., Hamimed A., Zerey W.E., Khaldi A., Mederbal K., 2009. Analyse et suivi du phénomène de la désertification en Algérie du nord.Vertigo-la revue électroniqueen sciences de l’environnement 8 (3).
  10. Boukarta S., 2019. Déterminants de la forme urbaine générant le potentiel de maîtrise de l’énergie en zone semi-aride. Application sur le cas de Djelfa en Algérie. Phd Dissertation, EPAU.
  11. Boukarta S., Berezowska E., 2017. Exploring the energy implication of urban density in residential buildings. Journal of Applied Engineering Sciences 7(1): 7–14.
  12. Boukarta S., Berezowska-Azzag E., 2018a. Assessing households’ gas and electricity consumption. A case study of Djelfa. Quaestiones Geographicae 37(4): 111–129. DOI: 10.2478/quageo-2018-0034.
  13. Boukarta S., Berezowska-Azzag E., 2018b. Energy demand of occupant’s spatial modification in residential buildings. Case study of Médéa, Algeria. Selected Scientific Papers-Journal of Civil Engineering 13(s1): 15–28.
  14. Boutaud Aurélien, Penser le changement ou changer le pansement, Phd dissertation, 2005, université de la Rochelle.
  15. Breheny M., 1995. The compact city and transport energy consumption. Transactions of the Institute of British Geographers 20(1): 81–101.
  16. Brownstone D., Golob T.F., 2008. The impact of residential density on vehicle usage and energy consumption. Journal of Urban Economics 65(1): 91–98.
  17. Calabrese F., Diao M., Di Lorenzo G., Ferreira J.Jr., Ratti C., 2012. Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation Research Part C: Emerging Technologies 26: 301–313.
  18. Cervero R., Murakami J., 2010. Effects of built environments on vehicle miles traveled: Evidence from 370 US urbanized areas. Environment and Planning A 42(2): 400–418.
  19. Cervero R., Radisch C., 1995. Travel choices in pedestrian versus automobile oriented neighborhoods. Transport Policy 3(3): 127–141.
  20. Chen C., Gong H., Paaswell R., 2007. Role of the built environment on mode choice decisions: Additional evidence on the impact of density. Transportation 35(3): 285–299.
  21. Chen J., Wang X., Steemers K., 2013. A statistical analysis of a residential energy consumption survey study in Hangzhou, China. Energy and Buildings 66: 193–202.
  22. Chen W., Lei Y., 2017. Path analysis of factors in energy-related CO2 emissions from Beijing’s transportation sector. Transportation Research Part D: Transport and Environment 50: 473–487. DOI10.1016/j.trd.2016.11.027.
  23. Dargay J., 2004. The effect of prices and income on car travel in the UK. Transportation Research Part A: Policy and Practice41(10): 949–960.
  24. Dieleman F.M., Dijst M., Burghouwt G., 2002. Urban form and travel behaviour: Micro-level household attributes and residential context. Urban Studies 39(3): 507–527.
  25. Ding C., Wang D., Liu C., Zhang Y., Yang J., 2017. Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transportation Research Part A: Policy and Practice 100: 65–80.
  26. Ewing R., Cervero R., 2010. Travel and the built environment: A meta-analysis. Journal of the American Planning Association 76(3): 265–294.
  27. Ewing R., Cervero R., 2002. Travel and the built environment: A synthesis. Transportation Research Record: Journal of the Transportation Research Board 1780: 87–114.
  28. Feng J., Dijst M., Prillwitz J., Wissink B., 2013. Travel time and distance in international perspective: A comparison between Nanjing (China) and the Randstad (The Netherlands). Urban Studies 50(14): 2993–3010.
  29. Handy S., Cao X., Mokhtarian P., 2005. Correlation or causality between the built environment and travel behavior? Evidence from Northern California. Transportation Research Part D: Transport and Environment 10(6): 427–444.
  30. Holden E., Norland I.T., 2005. Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the greater Oslo region. Urban Studies 42(12): 2145–2166.
  31. Hooper D., Coughlan J., Mullen M.R., 2008. Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods 6: 53–60.
  32. Hox J.J., 2000. An introduction in structural equation modeling. Family Science Review 11: 354–374.
  33. Hu L.T., Bentler P.M., 1999. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal 6(1): 1–55.
  34. IPCC, 2007. Climate change 2007: Synthesis report.
  35. IPCC, 2014. Climate change 2014: Synthesis report.
  36. Journal officiel n61, Loi n° 10-02 du 16 Rajab 1431 correspondant au 29 juin 2010 portant approbation du Schéma National d’Aménagement du Territoire.
  37. Karathodorou N., Graham D.J., Noland R.B., 2010. Estimating the effect of urban density on fuel demand. Energy Economics 32(1): 86–92.
  38. Khan M., Kockelman K.M., Xiong X., 2014. Models for anticipating non-motorized travel choices, and the role of the built environment. Transport Policy 35: 117–126.
  39. Kitamura R., Mokhtarian P.L., Laidet L., 1997. A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area. Transportation 24(2): 125–158.
  40. Kline R., 1998. Principles and practice of structural equation modeling. The Guilford Press, New York, NY.
  41. Limtanakool N., Dijst M., Schwanen T., 2006. The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium-and longer-distance trips. Journal of Transport Geography 14(5): 327–341.
  42. Ma J., Mitchell G., Heppenstall A., 2014. Daily travel behaviour in Beijing, China: An analysis of workers’ trip chains, and the role of socio-demographics and urban form. Habitat International 43: 263–273.
  43. Manaugh K., Miranda-Moreno L.F., El-Geneidy A.M., 2009. The effect of neighbourhood characteristics, accessibility, home–work location, and demographics on commuting distances. Transportation 37(4): 627–646.
  44. Marique A.F., 2013. Méthodologie d’évaluation énergétique des quartiers périurbains. Perspectives pour le renouvellement périurbain wallon (Doctoral dissertation, Université de Liège, Liège, Belgique).
  45. MATE, Ministère de l’Aménagement du Territoire et de l’environnement), 2010. Seconde communication nationale de l’Algérie sur les changements climatiques à la CCNUCC, projet GEF –PNUD 00039149, Algiers.
  46. MEAT, IPCC, 2001. Elaboration de la stratégie et du plan d’action national des changements climatiques, MEAT+GIEC 2001.
  47. Næss P., 2010. Residential location, travel, and energy use in the Hangzhou metropolitan area. Journal of Transport and Land Use 3(3): 27–59.
  48. Naess P., 2014. Tempest in a teapot: The exaggerated problem of transport-related residential self-selection as a source of error in empirical studies. Journal of Transport and Land Use 7(3): 57–79.
  49. Newman P.W.G., Kenworthy J.R., 1989. Cities and automobile dependence: An international sourcebook. Gower, Aldershot, UK.
  50. Pan H., Shen Q., Zhang M., 2009. Influence of urban form on travel behaviour in four neighbourhoods of Shanghai. Urban Studies 46(2): 275–294.
  51. Rogers R.G., Gumuchdjian P., 2008. Des Villes durables pour une petite planète. Moniteur.
  52. Schreiber J.B., Nora A., Stage F.K., Barlow E.A., King J., 2006. Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of Educational Research 99(6): 323–338.
  53. Tabachnick B.G., Fidell L.S., 2001. Using multivariate statistics. Allyn and Bacon, Boston.
  54. Van Acker V., Witlox F., 2010. Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship. Journal of Transport Geography 18(1): 65–74.
  55. Zhang Y., Wu W., Li Y., Liu Q., Li C., 2014. Does the built environment make a difference? An investigation of household vehicle use in Zhongshan metropolitan area, China. Sustainability 6(8): 4910–4930.