Main Article Content

Jerry N. Obiefuna
Chukwuma J. Okolie
Peter C. Nwilo
Olagoke E. Daramola
Lawrence C. Isiofia


The continuous monitoring of the relationship between land surface temperature (LST) and land cover change is imperative for an inquiry into the potential impact of LST on human well-being, including urban outdoor thermal comfort in Lagos State, Nigeria. Using Landsat imagery, this study assessed land cover and LST changes from 1984 to 2019. Land cover was extracted, LST was determined from Landsat imageries and the land cover changes were linked to LST using the contribution index (CI). Afterwards, the universal thermal climate index (UTCI) was calculated to determine the heat stress levels. Findings confirm the presence of urban sprawl and new growth areas in previously rural Local Government Areas (LGAs) eastward, northward and westward of Lagos metropolis and in regions which lie on the fringe of the state’s border with Ogun State. Also, a very strong link between high LST intensities and increasing concentration of urban areas in rapidly growing LGAs has been observed. This link further confirms the increased warming of the state, with an increase in mean LST of 2.16°C during 1984–2019. The UTCI which was used to gauge the influence of LST on outdoor thermal comfort ranged from moderate to strong heat stress levels. This study helps to strengthen the case for definite policies and actions which should be aimed at achieving moderate urban development through increased urban tree canopy/green infrastructure provision and carbon sequestration activities in urban design/landscape design, in Lagos State.


Download data is not yet available.

Article Details

How to Cite
Obiefuna, J. N., Okolie, C. J., Nwilo, P. C., Daramola, O. E., & Isiofia, L. C. (2021). POTENTIAL INFLUENCE OF URBAN SPRAWL AND CHANGING LAND SURFACE TEMPERATURE ON OUTDOOR THERMAL COMFORT IN LAGOS STATE, NIGERIA. Quaestiones Geographicae, 40(1), 5–23. https://doi.org/10.2478/quageo-2021-0001


  1. Achour-Younsi S., Kharrat F., 2016. Outdoor thermal comfort: Impact of the geometry of an urban street canyon in the Mediterranean subtropical climate – Case study Tunis, Tunisia. Proceedia – Social and Behavioral Sciences 216: 689–700. DOI 10.1016/j.sbspro.2015.12.062.
  2. Alademomi A.S., Okolie C.J., Daramola O.E., Agboola R.O., Salami T.J., 2020. Assessing the relationship of LST, NDVI and EVI with land cover changes in the Lagos Lagoon environment. Quaestiones Geographicae 39(3): 87–109. DOI 10.2478/quageo-2020-0025.
  3. Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B., 2013. An introduction to the Universal Thermal Climate Index. Geographia Polonica 86(1): 5–10. DOI 10.7163/GPol.2013.1.
  4. Błażejczyk, K., Epstein Y., Jendritzky G., Staiger H., Tinz B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56: 515–535. DOI 10.1007/s00484-011-0453-2.
  5. Bröde P., 2020. UTCI Universal Thermal Climate Index. Online: utci.org/ (accessed 12 March 2020).
  6. Chadchan J., Shankar R., 2009. Emerging urban development issues in the context of globalization. Journal of ITPI (Institute of Town Planners, India) 6(2): 78–85.
  7. Chen F., Liu Y., Liu Q., Qin F., 2015. A statistical method based on remote sensing for the estimation of air temperature in China. International Journal of Climatology 35(8): 2131–2143. DOI 10.1002/joc.4113.
  8. Cheng V., Ng E., 2006. Thermal comfort in urban open spaces for Hong Kong. Architectural Science Review 49: 236–242.
  9. Choi S., Jin D., Seong N., Jung D., Han K., 2020. Correlation of air temperature and land surface temperature of Landsat-8 in cities of South Korea. EGU General Assembly 2020. DOI 10.5194/egusphere-egu2020-13886 (accessed: 18 January 2021).
  10. Climate CHIP, 2020. Climate change heat impact & prevention. Online: climatechip.org/ (accessed 3 December 2020).
  11. Cui L., Shi J., 2012. Urbanization and its environmental effects in Shanghai, China. Urban Climate 2: 1–15. DOI 10.1016/j.uclim.2012.10.008.
  12. De Sherbinin A., Schiller A., Pulsipher A., 2007. The vulnerability of global cities to climate hazards. Environment and Urbanisation 19: 39–64. DOI 10.1177/0956247807076725.
  13. Deng Y., Shijie W., Xiaoyong B., Yichao T., Luhua W., Jianyong X., Fei, C., Qinghuan Q., 2018. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific Reports 8: 641. 12p. DOI 10.1038/s41598-017-19088-x.
  14. Dewan A.M., Corner R.J., 2012. The impact of land use and land cover changes on land surface temperature in a rapidly urbanizing megacity. IGARSS 2012. 6337–6339.
  15. Ferrelli F., Bustos M., Huamantinco-Cisneros M., Piccolo M., 2015. Utilization of satellite images to study the thermal distribution in different soil covers in Bahia Blanca city (Argentina). Revista de Teledetección 4: 31–42.
  16. Fiala D., Havenith G., Bröde P., Kampmann B., Jendritzky G., 2012. UTCI Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology 56(3): 429–441. DOI 10.1007/s00484-011-0424-7.
  17. Fu Y., Ren Z., Yu Q., He X., Xiao L., Wang Q., Liu C., 2019. Long-term dynamics of urban thermal comfort in China’s four major capital cities across different climate zones. PeerJ 7: e8026. DOI 10.7717/peerj.8026.
  18. Global Mass Transit 2015. Project update – Lagos bus rapid transit (BRT) system, Nigeria. Online: https://www.globalmasstransit.net/archive.php?id=18222 (accessed 19 December 2020).
  19. Gómez J., Naranjo M., Lousada S., Velarde J.G., Castanho R.A., Loures L., 2020. Land-use changes in the canary archipelago using the CORINE data: A retrospective analysis. Land 2020. 9: 232. DOI 10.3390/land9070232i.
  20. Good E.J., Ghent D.J., Bulgin C.E., Remedios J.J., 2017. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. Journal of Geophysical Research: Atmospheres 122: 9185–9210. DOI 10.1002/2017JD026880.
  21. Good E., 2015. Daily minimum and maximum surface air temperatures from geostationary satellite data. Journal of Geophysical Research: Atmospheres 120: 2306–2324. DOI 10.1002/2014JD022438.
  22. Goshayeshi D., Shahidan M.F., Khafi F., Ehtesham E., 2013. A review of researches about human thermal comfort in semi-outdoor spaces. European Online Journal of Natural and Social Sciences 2: 516–523.
  23. Guha S., Govil H., Dey A., Gill N., 2020. A case study on the relationship between land surface temperature and land surface indices in Raipur City, India. Geografisk Tidsskrift-Danish Journal of Geography 120(1): 35–50. DOI 10.1080/00167223.2020.1752272.
  24. Gutman G., Huang C., Chander G., Noojipady P., Masek J.G., 2013. Assessment of the NASA-USGS global land survey (GLS) datasets. Remote Sensing of Environment 134: 249–265.
  25. Hahs A.K., McDonnell M.J., McCarthy M.A., Vesk P.A., Corlett R.T., Norton B.A., Clemants S.E., Duncan R.P., Thompson K., Schwartz M.W., Williams N.S.G., 2009. A global synthesis of plant extinction rates in urban areas. Ecology Letters 12: 1165–1173. DOI 10.1111/j.1461-0248.2009.01372.x.
  26. Hamoodi M.N., Corner R., Dewan A., 2019. Thermophysical behaviour of LULC surfaces and their effect on the urban thermal environment. Journal of Spatial Science 64(1): 111–130. DOI 10.1080/14498596.2017.1386598.
  27. Harris Geospatial., 2020. Parallelepiped. Online: harrisgeospatial.com/docs/Parallelepiped.html (accessed 2 September 2020).
  28. Honjo T., 2009. Thermal comfort in outdoor environment. Global Environment Research 13: 43–47.
  29. Hou G.L., Zhang H.Y., Wang Y.Q., Qiao Z.H., Zhang, Z.X., 2010. Retrieval and spatial distribution of land surface temperature in the middle part of Jilin Province based on MODIS data. Scientia Geographica Sinica 30: 421–427.
  30. Ibe A.C., 1988. Coastline Erosion in Nigeria. Ibadan University Press. 217p.
  31. Isioye O.A., Ikwueze H.U. Akomolafe E.A., 2020. Urban heat island effects and thermal comfort in Abuja Municipal Area Council of Nigeria. FUTYJournal of the Environment 14(2): June 2020.
  32. Jago-on K.A.B., Kaneko S., Fujukura R., Fujiwara A., Imai T., Matsumoto T., 2009. Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities. Science of the total Environment 407(9): 3089–3104. DOI 10.1016/j.scitotenv.2008.08.004.
  33. Janatian N., Sadeghi M., Sanaeinejad S.H., Bakhshian E., Farid A., Hasheminia S.M., Ghazanfari S., 2016. A statistical framework for estimating air temperature using MODIS land surface temperature data. International Journal of Climatology 37(3): 1181–1194. DOI 10.1002/joc.4766.
  34. Jendritzky G., de Dear R., Havenith G., 2012. UTCI – Why another thermal index? International Journal of Biometeorology 56(3): 421–428. DOI 10.1007/s00484-011-0513-7.
  35. Johansson E., Thorsson S., Emmanuel R., Krüger E., 2014. Instruments and methods in outdoor thermal comfort studies – The need for standardization. Urban Climate 10: 346–366. DOI 10.1016/j.uclim.2013.12.002.
  36. Kim Y.H., Baik J.J., 2005. Spatial and temporal structure of urban heat island in Seoul. Journal of Applied Meteorology 44: 591–605. DOI 10.1175/JAM2226.1.
  37. Liu J.G., Diamond J., 2005. China’s environment in a globalizing world. Nature 435: 1179–1186. DOI 10.1038/4351179a.
  38. Mushore T.D., Mutanga O., Odindi J., Dube T., 2017a. Linking major shifts in land surface temperatures to long term land use and land cover changes: A case of Harare, Zimbabwe. Urban Climate 20: 120–134. DOI 10.1016/j.uclim.2017.04.005.
  39. Mushore T.D., Odindi J., Dube T., Mutanga O., 2017b. Outdoor thermal discomfort analysis in Harare, Zimbabwe in Southern Africa. South African Geographical Journal 2017. 18p. DOI 10.1080/03736245.2017.1339630.
  40. Mutiibwa D., Strachan S., Albright T., 2015. Land surface temperature and surface air temperature in complex terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(10): 4761–4774. DOI 10.1109/JSTARS.2015.2468594.
  41. Napoli C.D., Pappenberger F., Cloke H.L., 2018. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 62: 1155–1165. DOI 10.1007/s00484-018-1518-2.
  42. Nse O.U., Okolie C.J., Nse V.O., 2020. Dynamics of land cover, land surface temperature and NDVI in Uyo Capital City. Nigeria. Scientific African 10: e00599. DOI 0.1016/j.sciaf.2020.e00599.
  43. Nwilo P.C., Olayinka D.N., Obiefuna J.N., Atagbaza A.O., Adzandeh A.E., 2012. Determination of Land Surface Temperature (LST) and potential urban heat island effect in parts of Lagos State using satellite imageries. FUTY Journal of the Environment 7(1), 19–33. DOI 10.4314/fje.v7i1.2.
  44. Obiefuna J.N., Nwilo P.C., Okolie C.J., Emmanuel E.I., Daramola O.E., 2018. Dynamics of land surface temperature in response to land cover changes in Lagos metropolis. Nigerian Journal of Environmental Sciences and Technology (NIJEST) 2(2): 148–159. DOI 10.36263/nijest.2018.02.0074.
  45. Odindi J., Mutanga O., Abdel-Rahman E.M., Adam E., Bangamwabo V., 2017. Determination of urban land cover types and their implication on thermal characteristics in three South African coastal metropolitans using remotely sensed data. South African Geographical Journal 99(1): 52–67. DOI 10.1080/03736245.2015.1117015
  46. Oguz H., 2013. LST calculator: A program for retrieving land surface temperature from Landsat TM/ETM+ imagery. Environmental Engineering and Management Journal 12(3): 549–555. DOI 10.30638/eemj.2013.067.
  47. Ohwo O., Abotutu A., 2015. Environmental Impact of Urbanisation in Nigeria. British Journal of Applied Science & Technology 9(3): 212–221. DOI 10.9734/bjast/2015/18148.
  48. Ojeh Vincent N., Balogun A.A., Okhimamhe A.A., 2016. Urban-rural temperature differences in Lagos. Climate 4(2): 29. DOI 10.3390/cli4020029.
  49. Ongoma V., Muange P.K., Shilenje Z.W., 2016. Potential effects of urbanization on urban thermal comfort, a case study of Nairobi City, Kenya: A review. Geographica Pannonica 20(1): 19–31.
  50. Orosa J.O., Costa A.M., Rodriguez-Fernandez A., Roshan G., 2014. Effect of climate change on outdoor thermal comfort in humid climates. Journal of Environmental Health Science & Engineering 12(46): 1–9. DOI 10.1186/2052-336X-12-46.
  51. Oyler J.W., Ballantyne A., Jencso K., Sweet M., Running S.W., 2015. Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology 35: 2258–2279. DOI 10.1002/joc.4127.
  52. Parmentier B., McGill B.J., Wilson A.M., Regetz J., Jetz W., Guralnick R., Tuanmu M.N., Schildhauer M., 2015. Using multi-timescale methods and satellite-derived land surface temperature for the interpolation of daily maximum air temperature in Oregon. International Journal of Climatology 35: 3862–3878. DOI 10.1002/joc.4251.
  53. Polydoros A., Cartalis C., 2014. Assessing thermal risk in urban areas – An application for the urban agglomeration of Athens. Advances in Building Energy Research 8: 74–83.
  54. Radeloff V.C., Stewart S.I., Hawbaker T.J., Gimmi U., Pidgeon A.M., Flather C.H., Hammer R.B., Helmers D.P., 2010. Housing growth in and near United States protected areas limits their conservation value. Proceedings of the National Academy of Sciences 107(2): 940–945. DOI 10.1073/pnas.0911131107.
  55. Richards J., 1999. Remote sensing digital image analysis. Berlin. Springer-Verlag. 240p.
  56. Rizwan A.M., Denis Y.C., Leung L.C., 2008. A review on the generation, determination and mitigation of urban heat island. Journal of Environmental Sciences 20(1): 120–128. DOI 10.1016/s1001-0742(08)60019-4.
  57. Rohat G., Flacke J., Dosio A., Dao H., van Maarseveen M., 2019. Projections of human exposure to dangerous heat in African cities under multiple socioeconomic and climate scenarios. Earth’s Future 7: 528–546. DOI 10.1029/2018EF001020.
  58. Setaih K., Hamza N., Mohammed M.A., Dudek S., Townshend T., 2014. CFD modeling as a tool for assessing outdoor thermal comfort conditions in urban settings in hot arid climates. Journal of Information Technology in Construction (ITcon) 19: 248–269.
  59. Seto K.C., Fragkias M., Guneralp B., Reilly M.K., 2011. A meta-analysis of global urban land expansion. PLoS one 6(8): 1–9. DOI 10.1371/journal.pone.0023777.
  60. Shi T., Huang Y., Wang H., Shi C.E., Yang Y.J., 2015. Influence of urbanization on the thermal environment of meteorological station: Satellite-observed evidence. Advances in Climate Change Research 6(1): 7–15. DOI 10.1016/j.accre.2015.07.001
  61. Tarawally M., Wenbo X., Weiming H., Terence D.M., 2018. Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and inland city: A case of Freetown and Bo town in Sierra Leone. Remote Sensing 10(1): 112. DOI 10.3390/rs10010112.
  62. Tatem A.J., Nayar A., Hay S.I., 2006. Scene selection and the use of NASA’s global orthorectified Landsat dataset for land cover and land use change monitoring. International Journal of Remote Sensing 27: 3073–3078.
  63. Uejio C.K., Wilhelmi O.V., Golden J.S., Mills D.M., Gulino S.P., Samenow J.P., 2011. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 17(1): 498–507. DOI 10.1016/j.healthplace.2010.12.005.
  64. Ullah S., Tahir A.A., Akbar T.A., Hassan Q.K., Dewan A., Khan A.J., Khan M., 2019. Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the Lower Himalayan Region. Sustainability 11: 5492. DOI 10.3390/su11195492.
  65. UN [United Nations Department of Economic and Social Affairs, Population Division], 2014. The 2014 Revision World Urbanization Prospects. United Nations, New York. Online: un.org/en/desa/2014-revision-world-urbanization-prospects (accessed 12 March 2020).
  66. UN [United Nations Department of Economic and Social Affairs, Population Division], 2018. The 2018 revision world urbanization prospects. United Nations, New York. Online: un.org/development/desa/publications (accessed 12 March 2020).
  67. USGS [United States Geological Survey], 2015. Landsat 8 (L8) data users handbook, version 1.0. LSDS-1574. Department of the Interior, U.S. Geological Survey.
  68. USGS [United States Geological Surveys], 2020. Global visualisation online portals. Online: glovis.usgs.gov; earthexplorer.usgs.gov/ (accessed 12 March 2020).
  69. Walls W., Parker N., Walliss J., 2015. Designing with thermal comfort indices in outdoor sites. In Crawford R.H., Stephen A. (eds), Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association 2015. 1117–1128. Online: https://anzasca.net/wp-content/uploads/2015/12/107_Walls_Parker_Walliss_ASA2015.pdf (accessed 19 December 2020).
  70. Wang C., Zhan W., Liu Z., Li J., Li L., Fu P., Huang F., Lai J., Chen J., Hong F., Jiang S., 2020. Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration. Journal of Cleaner Production 277: 123830. DOI 10.1016/j.jclepro.2020.123830.
  71. Wei-Wu W., Li-Zhong Z., Ren-Chao W., 2004. An analysis on spatial variation of urban human thermal comfort in Hangzhou, China. Journal of Environmental Sciences 16: 332–338.
  72. Widyasamratri H., Souma K., Suetsugi T., Ishidaira H., Ichikawa Y., Kobayashi H., Inagaki I., 2013. Air temperature estimation from satellite remote sensing to detect the effect of urbanization in Jakarta, Indonesia. Journal of Emerging Trends in Engineering and Applied Sciences 4: 800–805.
  73. WWO [World Weather Online], 2020. Historical Weather Data. Online: worldweatheronline.com/ (accessed 12 March 2020).
  74. Yahia M.W., Johansson E., Thorsson S., Lindberg F., Rasmussen M.I., 2018. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania. International Journal of Biometeorology 62: 373–385. DOI 10.1007/s00484-017-1380-7.
  75. Yilmaz S., 2007. Human thermal comfort over three different land surfaces during summer in the city of Erzurum, Turkey. Atmosfera 20: 289–297.
  76. Yuan F., 2008. Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modeling. International Journal of Remote Sensing 29(4): 1169–1184. DOI 10.1080/01431160701294703
  77. Zare S., Hasheminejad N., Shirvan H. E., Hemmatjo R., Sarebanzadeh K., Ahmadi S., 2018. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes 19: 49–57. DOI 10.1016/j.wace.2018.01.004.
  78. Zareie S., Khosravi H., Nasiri A., 2016. Derivation of land surface temperature from Landsat Thematic Mapper (TM) sensor data and analysing relation between land use changes and surface temperature. Solid Earth Discussions 1–15. DOI 10.5194/se-2016-22.
  79. Zhang Y., Odeh I.O.A., Han, C., 2009. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation 11: 256–264.
  80. Zhao S.Q., Da L.J., Tang Z.Y., Fang H.J., Song K., Fang J.Y., 2006. Ecological consequences of rapid urban expansion: Shanghai, China. Frontier Ecology and Environment 4(7): 341–346. DOI 10.1890/1540-9295(2006)004[0341:ECORUE]2.0.CO;2.
  81. Zhou D., Zhang L., Hao L., Sun G., Liu Y., Zhu C., 2016. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Science of the Total Environment 544: 617–626. DOI 10.1016/j.scitotenv.2015.11.168.