Spatiotemporal variation of terrestrial carbon sequestration in tropical urban area (case study in Surakarta District, Indonesia)

Main Article Content

Danardono Danardono
M. Iqbal Taufiqurrahman Sunariya
Vidya Nahdiyatul Fikriyah
Munawar Cholil


The value of terrestrial carbon sequestration in urban areas, due to lack of vegetation as a carbon sink, is rarely studied. In fact, urban areas have high carbon emission values, which must be minimised. On the other hand, the value of carbon sequestration in urban areas is very dynamic due to natural factors from the environment and non-natural factors from anthropogenic activities. The main objectives of this study are to identify the carbon dioxide sequestration in urban areas, especially in tropical climates, and to determine the dynamics of carbon sequestration in urban areas for a year. The results show that carbon sequestration in tropical urban areas has a significant value compared with urban areas in temperate climates. This condition happens because there are still green open spaces in gardens and agricultural lands. The value of carbon sequestration in this tropical urban area experiences monthly dynamics caused by rainfall variation and anthropogenic activities, such as land conversion and plant type conversion in agricultural lands.


Download data is not yet available.

Article Details

How to Cite
Danardono, D., Sunariya, M. I. T., Fikriyah, V. N., & Cholil, M. (2021). Spatiotemporal variation of terrestrial carbon sequestration in tropical urban area (case study in Surakarta District, Indonesia). Quaestiones Geographicae, 40(3), 5–20.


  1. Archer D., 2010. The Global Carbon Cycle. Princeton University Press, United States.
  2. Basuki I., Kauffman J. B., Peterson J., Anshari G., Murdiyarso D., 2019. Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan, Indonesia. Mitigation and Adaptation Strategy for Global Change 24(4): 557–573.
  3. Bian J., Li A., Deng W., 2015. Estimation and analysis of net primary Productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing. Procedia Environmental Sciences 2(2010): 288–301. DOI 10.1016/j. proenv.2010.10.035.
  4. Chen G., Huang Y., Chen J., Wang Y., 2019. Spatiotemporal variation of vegetation net primary productivity and its responses to climate change in the Huainan Coal Mining Area. Journal of the Indian Society of Remote Sensing 47(11): 1905–1916. DOI 10.1007/s12524-019-01039-w.
  5. Chen J., Brosofske K. D., Noormets A., Crow T. R., Bresse M. K., Le Moine J. M., Euskirchen E. S., Mather S. V., Zheng D., 2004. A working framework for quantifying carbon sequestration in disturbed land mosaics. Environmental Management 33(1): 210–221. DOI 10.1007/s00267-003-9131-4.
  6. Chen T., Huang Q., Liu M., Li M., Qu L. A., Deng S., Chen D., 2017. Decreasing net primary productivity in response to urbanization in Liaoning Province, China. Sustainability 9(162): 1–17. DOI 10.3390/su9020162.
  7. Danoedoro P., 2012. Pengantar Penginderaan Jauh Digital (Basic of Digital Remote Sensing). ANDI Offset, Yogyakarta.
  8. DeLucia E. H., Drake J. E., Thomas R. B., Gonzalez-Meler M. I., 2007. Forest carbon use efficiency: Is respiration a constant fraction of gross primary production ?. Global Change Biology 13(6): 1157–1167. DOI 10.1111/j.13652486.2007.01365.x.
  9. Goetz S. J., Prince S. D., Small J., Gleason A. C., 2000. Interannual variability of global terrestrial primary production: Observations that differed regionally over the 8-year integrated global slight trend toward increased values through with boreal regions increasing regions for each IøC rise in air tempera. Journal of Geophysical Research 105(D15): 20077–20091.
  10. Gong W., Wang L., Lin A., Zhang M., 2012. Evaluating the monthly and interannual variation of net primary production in response to climate in Wuhan during 2001 to 2010. Geosciences Journal 16(3): 347–355. DOI 10.1007/s12303-012-0025-4.
  11. Guitart A. B., Rodriguez L. E. 2010. Private valuation of carbon sequestration in forest plantations. Ecological Economics 69(3): 451–458. DOI 10.1016/j.ecolecon.2009.10.005.
  12. Hertel D., Moser G., Culmsee H., Erasmi S., Horna V., Schuldt B., Leuschner C., 2009. Forest ecology and management belowand above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management 258(9): 1904–1912. DOI 10.1016/j.foreco.2009.07.019.
  13. Ji Y., Zhou G., Luo T., Dan Y., Zhou L., Lv X., 2020. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. Forest Ecosystems 7(1): 1–11.
  14. Jiao W., Chen Y., Li W., Zhu C., Li Z., 2018. Estimation of net primary productivity and its driving factors in the Ili River Valley, China. Journal of Arid Land 10(5): 781–793. DOI 10.1007/s40333-018-0022-1.
  15. Kementerian Lingkungan Hidup dan Kehutanan Indonesia, 2016. Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV) (Report of Greenhouse Gases Inventory and Monitoring, Reporting, and Verifiying). Kementerian Lingkungan Hidup dan Kehutanan Indonesia Press, Jakarta.
  16. Lin X., Han P., Zhang W., Wang G., 2017. Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century. Global and Planetary Change 154: 23–32. DOI 10.1016/j.gloplacha.2017.05.008.
  17. Lovett G. M., Cole J. J., Pace M. L., 2006. Is net ecosystem production equal to ecosystem carbon accumulation?. Ecosystem 9(1): 152–155. DOI 10.1007/s10021-005-0036-3.
  18. Luo Z., Wu W., Yu X., Song Q., Yang J., Wu J., Zhang H., 2018. Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan Plateau. Remote Sensing 10(9): 1352. DOI 10.3390/rs10091352.
  19. Malhi Y., Doughty C., Galbraith D., 2011. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society 366: 3225– 3245. DOI 10.1098/rstb.2011.0062.
  20. Mao D., Wang Z., Li L., Ma W., 2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecological Indicators 41: 40–48. DOI 10.1016/j.ecolind.2014.01.020.
  21. Maridi M., Agustina P., Saputra A., 2014. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts. Biodiversitas Journal of Biological Diversity 15(2): 215–223. DOI 10.13057/biodiv/d150214.
  22. Milesi C., Elvidge C. D., Nemani R. R., Running S. W., 2003. Assessing the impact of urban land development on net primary productivity in the southeastern United States Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sensing of Environment 86(3): 401–410. DOI 10.1016/S0034-4257(03)00081-6.
  23. Mukhortova L., Schepaschenko D., Shvidenko A., McCallum I., Kraxner F., 2015. Soil contribution to carbon budget of Russian forests. Agricultural and Forest Meteorology 200: 97–108. DOI 10.1016/j.agrformet.2014.09.017.
  24. Myneni R. B., Williams D. L., 1994. On the relationship between FAPAR and NDVI. Remote Sensing of Environment 49(3): 200–211.
  25. Odum E. P., 1969. The strategy of ecosystem development. Science 164(3877): 262LP–270. DOI 10.1126/science.164.3877.262.
  26. Oviantari M. V., Gunamantha I. M., Ristiati N. P., Santiasa I. M., Astariani P. P., 2018. Carbon sequestration by aboveground biomass in urban green spaces in Singaraja city Carbon sequestration by above-ground biomass in urban green spaces in Singaraja city. IOP Conference Series: Earth and Environmental Science 200(1): 1–6.
  27. Potter C., Klooster S., Genovese V., Hiatt C., 2013. Forest production predicted from satellite image analysis for the Southeast Asia region. Carbon Balance and Management 8(9): 1–6. DOI 10.1186/1750-0680-8-9.
  28. Potter C. S., Fieldc B., 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles 7(4): 811–841. DOI 10.1029/93GB02725.
  29. Prentice I. C., Heimann M., Sitch S., 2000. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Ecology Application 10(6): 1553–1573.
  30. Prince S. D., Goward S. N., 1995. Global primary production: A remote sensing approach. Journal of Biogeography 22: 815–835.
  31. Rahayu R., 2017. Soil classification and land suitability for agroforestry of Bengawan Solo Hulu Watershed. SAINS TANAH – Journal of Soil Science and Agroclimatology 13(2): 41–50. DOI 10.15608/stjssa.v13i2.476.
  32. Running S. W., Thornton P. E., Nemani R., Glassy J. M., 2000. Global terrestrial gross and net primary productivity from the earth observing system. In Sala, O., Jackson, R., and Mooney, H. (eds) Methods in Ecosystem Science. Springer Verlag, New York: 44–57.
  33. Running S. W., Nemani R. R., Heinsch F. A., Zhao M., Reeves M., Hashimoto H., 2004. A continuous satellite-derived measure of global terrestrial primary production. Biosciences 54(6): 547–560. DOI 10.1641/0006-3568(2004)054.
  34. Schuur E. A., Chadwick O. A., Matson P. A., 2001. Carbon cycling and soil carbon storage in mesic to wet Hawaiian Montane Forests. Ecology 82(11): 3182–3196.
  35. Statistical Bureau of Indonesia (Badan Pusat Statistik), 2019. Surakarta dalam Angka Tahun 2019 (Statistical Reports of Surakarta in 2019). Badan Pusat Statistik Press, Surakarta. Thornthwaite C. W., 1948. An approach toward a rational classification of climate. Geographical Review 38(1): 55–94. DOI 10.2307/210739.
  36. Torres A. B., MacMillan D. C., Skutsch M., Lovett J. C., 2013. The valuation of forest carbon services by Mexican citizens: The case of Guadalajara city and La Primavera biosphere reserve. Regional Environmental Change 13(3): 661–680. DOI 10.1007/s10113-012-0336-z.
  37. Wang B., Yang S., Lu C., Zhang J., Wang Y., 2010. Comparison of net primary productivity in karst and non-karst areas: A case study in Guizhou Province, China. Environmental Earth Sciences 59(6): 1337–1347. DOI 10.1007/ s12665-009-0121-6.
  38. Wang X., Tan K., Chen B., Du P., 2017. Assessing the spatiotemporal variation and impact factors of net primary productivity in China. Scientific Reports 7(1): 1–10. DOI 10.1038/srep44415.
  39. Wang Y. B., Zhao Y. H., Han L., Ao Y., 2018. Spatiotemporal variation of vegetation net primary productivity and its driving factors from 2000 to 2015 in Qinling-Daba Mountains, China. The Journal of Applied Ecology 29(7): 2373– 2381. DOI 10.13287/j.1001-9332.201807.010.
  40. Wu Y., Wu Z., Liu X., 2020. Dynamic changes of net primary productivity and associated urban growth driving forces in Guangzhou City, China. Environmental Management 65: 758–773. DOI 10.1007/s00267-020-01276-7.
  41. Xiao X., Zhang Q., Saleska S., Hutyra L., De Camargo P., Wofsy S., Frolking S., Boles S., Keller M., Moore III B., 2005. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment 94(1): 105–122.
  42. Yang H., Hu D., Xu H., Zhong X., 2020. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environmental Science and Pollution Research 27(13): 14915–14932.
  43. Yangyang L. I. U., 2019. Assessing the dynamics of grassland net primary productivity in response to climate change at the global scale. China Geographical Science 29(5): 725–740.
  44. Yasin S., 2018. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science 129(2018): 1–9.
  45. Zhou Y., Xing B., Ju W., 2015. Assessing the impact of urban sprawl on net primary productivity of terrestrial ecosystems using a process-based model – A Case Study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(5): 2318–2331. DOI 10.1109/JSTARS.2015.2440274.