Spatial evolution of the river valleys under the influence of active volcano: A case of Merapi volcanic plain

Main Article Content

Arif Ashari
Auhadi Purwantara
Nursida Arif
Edi Widodo

Abstract

Merapi Volcano in Central Java, Indonesia, has a high eruption intensity that triggers landscape changes in the form of a river channel evolution. In this paper, the spatial change of river valleys under the influence of sediments deposition in the fluvio-volcanic system is investigated. The data were collected by employing observation, remote sensing image interpretation, literature study and documentation of data from several agencies. The data were analysed using the spatial approach supported by geographic information system (GIS) and remote sensing. The results show that there are many palaeochannels related to fluvio-volcanic processes from the southern to the western sectors of the Merapi volcanic foot. Palaeochannels are mainly distributed next to the main river valleys. This condition correlates with the contributions of the Merapi eruptions. The palaeochannel distribution patterns cluster radially following the distribution pattern of the river valleys. The process that plays the most important role in the evolution of palaeochannels is the deposition of lahar. In sum, this research shows that volcanic activities over a long period of time have provided great and important contributions that have driven the landform evolution. The various changes that occur also reveal the unique morphological characteristics, showing the influence of the volcanic processes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ashari, A., Purwantara, A., Arif, N., & Widodo, E. (2021). Spatial evolution of the river valleys under the influence of active volcano: A case of Merapi volcanic plain. Quaestiones Geographicae, 40(3), 45–64. https://doi.org/10.2478/quageo-2021-0023
Section
Articles

References

  1. Andreastuti S.D., Alloway B.V., Smith I.E., 2000. A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: Implications for eruption predictions and hazard assessment. Journal of Volcanology and Geothermal Research 100 (1–4): 51–67.
  2. Andreastuti S.D., Newhall C., Dwiyatno J., 2006. Menelusuri kebenaran letusan Gunung Merapi 1006 (Tracing the truth of the eruption of Merapi Volcano 1006). Indonesian Journal of Geoscience 1(4): 201–207.
  3. Ashari A., 2019. Evolusi bentanglahan vulkan aktif dan pengaruhnya terhadap kehidupan masyarakat di sebagian wilayah dataran kaki Merapi (Landscape evolution of active volcano and Its impact on people’s lives in some area of the Merapi Footplain). In: D.E. Agustinova, ed., Tokoh-tokoh ilmu sosial keindonesiaan dan model implementasinya (personage and implementation models of Indonesian social sciences). Masiska Faculty of Social Sciences Universitas Negeri Yogyakarta, Yogyakarta: 309–336.
  4. Ashari A., Widodo E., 2019. Hidrogeomorfologi dan potensi mataair lereng baratdaya Gunung Merbabu (Hydrogeomorphology and potential of springs at the soutwestern flank of Merbabu Volcano). Majalah Geografi Indonesia 33(1): 48–56.
  5. Aurita R.P., Purwantara S., 2017. Karakteristik Mataair Kaki Lereng Gunung Merapi dan Pemanfaatannya di Kecamatan Dukun Kabupaten Magelang (The characteristics of springs at the footslopes of Merapi Volcano and their use in the Dukun Sub-District, Magelang District). Geomedia: Majalah Ilmiah dan Informasi Kegeografian 15(1): 75–85.
  6. Aziz S., Ngui R., Lim Y.A., Sholehah I., Farhana J.N., Azizan A.S., Wan Yusoff W.S., 2012. Spatial pattern of 2009 dengue distribution in Kuala Lumpur using GIS application. Tropical Biomedicine 29(1): 113–120.
  7. Bélizal E.D., Lavigne F., Hadmoko D.S., Degeai J.P., Dipayana G.A., Mutaqin B.W., Marfai M.A., Coquet M., Le Mauff B., Robin A.K., Vidal C., Aisyah N., 2013. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk. Journal of Volcanology and Geothermal Research 261: 330–347. DOI 10.1016/j.jvolgeores.2013.01.010.
  8. Bridge J.S., 1985. Paleochannel patterns inferred from alluvial deposits: A critical evaluation. Journal of Sedimentary Research 55(4): 579–589. DOI 10.1306/212F8738-2B2411D7-8648000102C1865D.
  9. Bronto S., Ratdomopurbo A., Asmoro P., Adityarani M., 2014. Longsoran Raksasa Gunung Api Merapi Yogyakarta–Jawa Tengah (Gigantic Avalanche of Merapi Volcano Yogyakarta – Central Java). Jurnal Geologi dan Sumberdaya Mineral 15(4): 165–183.
  10. Chen W., Qinghai X., Xiuqing Z., Yonghong M., 1996a. Palaeochannels on the North China Plain: Types and distributions. Geomorphology 18(1): 5–14.
  11. Chen W., Qinghai X., Yonghong M., Xiuqing Z., 1996b. Palaeochannels on the North China plain: Palaeoriver geomorphology. Geomorphology 18(1): 37–45. DOI 10.1016/0169555X(95)00150-4.
  12. Clarke J., 2009. Palaeovalley, Palaeodrainage, and Palaeochannel–What’s the difference and why does it matter?. Transactions of the Royal Society of South Australia 133(1): 57–61. DOI 10.1080/03721426.2009.10887111.
  13. Gertisser R., Charbonnier S.J., Keller J., Quidelleur X., 2012. The geological evolution of Merapi Volcano, Central Java, Indonesia. Bulletin of Volcanology 74(5): 1213–1233. DOI 10.1007/s00445-012-0591-3.
  14. Gomez C., Janin M., Lavigne F., Gertisser R., Charbonnier S., Lahitte P., Murwanto H., Hadmoko S.R., Fort M., Wassmer P., Degroot V., 2010. Borobudur, a basin under volcanic influence: 361,000 years BP to present. Journal of Volcanology and Geothermal Research 196(3–4): 245–264. DOI 10.1016/j.jvolgeores.2010.08.001.
  15. Hall R., 2009. Southeast Asia’s changing palaeogeography. Blumea 54(1–2): 148–161. DOI 10.3767/000651909´475941.
  16. Harris A.J., Rose W.I., Flynn L.P., 2003. Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bulletin of Volcanology 65(2): 77–89. DOI 10.1007/s00445-002-0243-0.
  17. Harris A.J., Vallance J.W., Kimberly P., Rose W.I., Matias O., Bunzendahl E., Flynn L.P., Garbeil H., 2006. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcan Santiaguito, Guatemala. Geological Society of America Special Paper 412: 85–104. DOI 10.1130/2006.2412(05).
  18. Lavigne F., Thouret J.C., Voight B., Suwa, H., Sumaryono, A., 2000. Lahars at Merapi volcano, Central Java: An overview. Journal of Volcanology and Geothermal Research 100(1–4): 423–456.
  19. Lavigne F., Thouret J.C., 2002. Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49(1–2): 45–69. DOI 10.1016/S0169-555X(02)00160-5.
  20. Maruyama Y., 1993. Influence of rapid geomorphological change by volcanic activity on flood and inundation in the Mt. Merapi Area, Central Java, Indonesia. GeoJournal 34(4): 340–342.
  21. Mulyaningsih S., Sampurno.S., Zaim Y., Puradimaja D.J., Bronto S., Siregar D.A., 2006. Perkembangan Geologi pada Kuarter Awal sampai Masa Sejarah di Dataran Yogyakarta (Development of Geology in the Early Quarter to Historical Period in the Plain of Yogyakarta). Indonesian Journal of Geoscience 1(2): 103–113.
  22. Murwanto H., Gunnell, Y., Suharsono S., Sutikno S., Lavigne F., 2004. Borobudur monument (Java, Indonesia) stood by a natural lake: Chronostratigraphic evidence and historical implications. The Holocene 14(3): 459–463.
  23. Murwanto H., Siregar D.A., Purwoarminta A., 2013. Jejak erupsi Gunung Merapi di Kabupaten Magelang Provinsi Jawa Tengah (Traces of the eruption of Merapi Volcano in Magelang Regency, Central Java Province). Jurnal Lingkungan dan Bencana Geologi 4(2): 135–147.
  24. Newhall C.G., Bronto S., Alloway B., Banks N.G., Bahar I., Del Marmol M.A., Wirakusumah A.D., Hadisantono R.D., Holcomb R.T., McGeehin J., Miksic J.N., Rubin M., 2000. 10,000 years of explosive eruptions of Merapi Volcano, Central Java: Archaeological and modern implications. Journal of Volcanology and Geothermal Research 100(1–4): 9–50. DOI 10.1016/S0377-0273(00)00132-3.
  25. Nirwansyah A.W., Utami M., Suwarno.S., Hidayatullah T., 2015. Analisis pola kejadian sebaran longsorlahan di Kecamatan Somagede dengan Sistem Informasi Geografis (Analysis of the distribution pattern of landslide events in Somagede Sub-District with Geographic Information Systems). Geoplanning 2(1): 1–9.
  26. Paguican E.M., Lagmay A.M., Rodolfo K.S., Rodolfo L.S., Tengonciang A.M., Lapus M.R., Baliatan E.G., Obille Jr E.C., 2009. Extreme rainfall-induced lahars and dike breaching, 30 November 2006, Mayon Volcano, Philippines. Bulletin of Volcanology 71(8): 845–857. DOI 10.1007/ s00445-009-0268-8.
  27. Palmer B.A., 1991. Holocene lahar deposits in the Whakapapa catchment, northwestern ring plain. Ruapehu volcano (North Island, New Zealand). New Zealand Journal of Geology and Geophysics 34(2): 177–190.
  28. Qinghai X., Chen W., Xiaolan Y., Ningjia Z., 1996. Palaeochannels on the North China Plain: Relationships between their development and tectonics. Geomorphology
  29. (1): 27–35. DOI 10.1016/0169-555X(95)00149-Y.
  30. Ratih S., Awanda H.N., Saputra A.C., Ashari A., 2018. Hidrogeomorfologi mataair kaki Vulkan Merapi bagian selatan (Hydrogeomorphology of springs at the southern foot of Merapi Volcano). Geomedia Majalah Ilmiah dan Informasi Kegeografian 16(1): 25–36.
  31. Schumacher R., Schmincke H.U., 1990. The lateral facies of ignimbrites at Laacher See volcano. Bullein of Volcanology 52(4): 271–285.
  32. Sudradjat A., Syafri I., Paripurno E.T., 2011. The characteristics of Lahar in Merapi Volcano, Central Java as the indicator of the explosivity during holocene. Indonesian Journal of Geoscience 6(2): 69–74.
  33. Sutikno, Santosa L.W., Widiyanto., Kurniawan, A., Purwanto, T.H., 2007. “Kerajaan Merapi”, Sumberdaya Alam dan Daya Dukungnya (“The Merapi Kingdom”: Natural Resources and Carrying Capacity). Yogyakarta: BPFG Gadjah Mada University.
  34. Tjia H.D., 2014. Wrench-slip reversals and structural inversions: Cenozoic slide-rule tectonics in Sundaland. Indonesian Journal on Geoscience 1(1): 35–52.
  35. Verstappen H.T., 2010. Indonesian landforms and plate tectonics. Indonesian Journal on Geoscience 5(3): 197–207.
  36. Verstappen H.T., 2013. Garis Besar Geomorfologi Indonesia (Outline of the Geomorphology of Indonesia).Gadjah Mada University Press, Yogyakarta.
  37. Verstappen H.T., 2014. Geomorfologi Terapan: Survei Geomorfologikal untuk Pengembangan Lingkungan (Applied Geomorphology: Geomorphological Survey for Environmental Development).Penerbit Ombak, Yogyakarta.
  38. Wakabayashi J., 2013. Paleochannels, stream incison, erosion, topographic evolution, and alternative explanations of paleoaltimetry, Sierra Nevada, California. Geosphere 9(2): 191–215. DOI 10.1130/GES00814.1.