Role of internal variability of climate system in increase of air temperature in Wrocław (Poland) in the years 1951–2018

Main Article Content

Andrzej A. Marsz
Anna Styszyńska
Krystyna Bryś
Tadeusz Bryś

Abstract

In the course of analysing the annual air temperature in Wrocław (TWr), a rapid change of the thermal regime was found between 1987 and 1989. TWr increased by >1°C, a strong, statistically significant positive trend emerged. The analysis of processes showed that strong warming in the cold season of the year (December–March) occurred as a result of an increase in the NAO intensity and warming in the warm season because of increased sunshine duration in Wrocław (ShWr). Multiple regression analysis has shown that the winter NAO Hurrell’s index explains 15% of TWr variance, and the ShWr of the long-day (April–August) period 49%, whereas radiative forcing 5.9%. This indicates that the factors incidental to the internal variability of the climate system explain 64% of the TWr variability and the effect of increased CO2 concentration only ~6%. The reason for this rapid change of the thermal regime was a radical change in macro-circulation conditions in the Atlantic-European circular sector, which took place between 1988 and 1989. The heat, which is the cause of warming in Wrocław, comes from an increase in solar energy inflow (April–August) and also is transported to Europe from the North Atlantic surface by atmospheric circulation (NAO). These results indicate that the role of CO2 in shaping the contemporary temperature increase is overestimated, whereas the internal variability of the climate system is underestimated.

Downloads

Download data is not yet available.

Article Details

How to Cite
Marsz, A. A., Styszyńska, A., Bryś, K., & Bryś, T. (2021). Role of internal variability of climate system in increase of air temperature in Wrocław (Poland) in the years 1951–2018. Quaestiones Geographicae, 40(3), 109–124. https://doi.org/10.2478/quageo-2021-0027
Section
Articles

References

  1. BACC [BALTEX Assessment of climate change for the Bal tic Sea region] Author Team, 2008. Assessment of climate change for the Baltic Sea basin. Springer Science & Business Media, Berlin Heidelberg.
  2. Barry R.G., Carleton A.M., 2013. Synoptic and dynamic clima tology. Routledge, London. DOI 10.4324/9780203218181. Besharat F., Dehghan A.A., Faghih A.R., 2013. Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21: 798–821. DOI 10.1016/j.rser.2012.12.043.
  3. Black J.N., Bonython C.W., Prescott J.A., 1954. Solar radiation and the duration of sunshine. Quarterly Journal of the Roy al Meteorological Society 80(344): 231–235. DOI 10.1002/ qj.49708034411.
  4. Brázdil R., Budíková M., Auer I., Böhm R., Cegnar T., Faško P., Lapin M., Gajič–Čapka M., Zaninović K., Koleva E., Niedźwiedź T., Ustrnul Z., Szalai S., Weber R.O., 1996. Trends of maximum and minimum daily temperatures in central and southeastern Europe. International Journal of Climatology 16(7): 765–782. DOI 10.1002/(SICI)1097 0088(199607)16:7<765::AID-JOC46>3.0.CO;2-O.
  5. Bryś K., Bryś T., 2010. Reconstruction of the 217-year (1791– 2007) Wrocław air temperature and precipitation series. Bulletin of Geography. Physical Geography Series 3: 121–171. DOI 10.2478/bgeo-2010-0007.
  6. Bryś K., Bryś T., Głogowski A., 2019. Long-wave radiation balances of the south-west Poland. In: E3S Web of Con ferences. 116: 00013. DOI 10.1051/e3sconf/201911600013. Bryś K., Bryś T., Ojrzyńska H., Sayegh M.A., Głogowski A., 2020. Variability and role of long-wave radiation fluxes in the formation of net radiation and thermal features of grassy and bare soil active surfaces in Wrocław. Science of the Total Environment 747, 141192. DOI 10.1016/j.scito tenv.2020.141192.
  7. Büntgen U., Myglan V.S., Ljungqvist F.C., McCormick M., Di Cosmo N., Sigl M., Jungclaus J., Wagner S., Krusic P.J., Esper J., Kaplan J.O., de Vaan M.A.C., Luterbacher J., Wacker L., Tegel W., Kirdyanov A.V, 2016. Cooling and societal change during the late antique little ice age from 536 to around 660 AD. Nature Geoscience 9: 231–236. DOI 10.1038/ngeo2652.
  8. Cohen J., Barlow M., 2005. The NAO, the AO, and global warming: How closely related? Journal of Climate 18(21): 4498–4513. DOI 10.1175/JCLI3530.1.
  9. Curry R.G., McCartney M.S., 2001. Ocean gyre circulation changes associated with the North Atlantic Oscillation. Journal of Physical Oceanography 31(12): 3374–3400. DOI 10.1175/1520-0485(2001)031<3374:OGCCAW>2.0.CO;2.
  10. Czaja A., Frankignoul C., 2002. Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. Journal of Climate 15(6): 606–623. DOI 10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.
  11. Czaja A., Robertson A.W., Huck T., 2003. The role of At lantic ocean-atmosphere coupling in affecting North Atlantic Oscillation variability. In: Hurrell J.W., Kush nir Y., Ottersen G., Visbeck M. (eds), The North Atlan tic Oscillation: Climatic significance and environment im pact. AGU Geophysical Monograph 134: 147–172. DOI 10.1029/134GM07.
  12. Czernecki B., Głogowski A., Nowosad J., 2020. Climate: An R package to access free in-situ meteorological and hydro logical datasets for environmental assessment. Sustaina bility 12(1), 394. DOI 10.3390/su12010394.
  13. Degirmendžić J., Kożuchowski K., 2018. Circulation ep ochs based on the Vangengeim-Girs large scale patterns (1891–2010). Acta Universitatis Lodziensis, Folia Geographi ca Physica 17: 7–13. DOI 10.18778/1427-9711.17.01.
  14. Dimitrieev A.A., Belyazo V.A., 2006. Kalendarnyj katalog atmosfernykh processov po cirkumpolarnoj zonie sever nogo polushariya i ikh kharakteristiki za period s 1949 po 2005 god (Calendar catalogue of atmospheric processes in the Northern Hemisphere circumpolar zone and their characteristics in the period 1949–2005). In: Dimitrieev A.A., Belyazo V.A. (eds.), Kosmos, planetarnaya klimatich eskaya izmenchivost’ i atmosfera polarnykh regionov (Cos mos, Planetary Climatic Variability, and Atmosphere of the Polar Regions). Gidrometeoizdat, St. Petersburg: 259–336.
  15. Dubicka M., 1994. Wpływ cyrkulacji atmosfery na kształtowanie warunków klimatu (na przykładzie Wrocławia). Studia Ge ograficzne 60, Acta Universitatis Wratislaviensis, 0239-6661, no. 1581, 295.
  16. Dubicka M., Pyka J., 2001. Wybrane zagadnienia klimatu Wrocławia w XX wieku (Selected problems of climate in Wrocław during the 20th century). Prace i Studia Geogra ficzne 29: 101–112.
  17. Dubicki A., Dubicka M., Szymanowski M., 2002. Klimat Wrocławia. In: Smolnicki K., Szykasiuk M. (eds.), Śro dowisko Wrocławia: Informator 2002. Dolnośląska Fundacja Ekorozwoju, Wrocław: 9–25.
  18. Fortuniak K., Kożuchowski K., Żmudzka E., 2001. Trendy i okresowość zmian temperatury powietrza w Polsce w drugiej połowie XX wieku. Przegląd Geofizyczny 46(4): 283–303.
  19. Frankignoul C., de Coëtlogon G., Joyce T.M., Dong S., 2001. Gulf Stream variability and ocean–atmosphere interac tions. Journal of Physical Oceanography 31(12): 3516–3529. DOI 10.1175/1520-0485(2002)031<3516:GSVAOA>2.0. CO;2.
  20. Girs A.A., 1971. Mnogoletniie kolebaniia atmosfernoi cirkulacii i dolgosrochnye gidrometeorologicheskye prognozy. Gidrome teoizdat, Leningrad.
  21. Girs A.A., Kondratovich K.V., 1978. Metody dolgosrochnykh prognozov pogody. Gidrometeoizdat, Leningrad.
  22. Głogowski A., Bryś K., Bryś T., 2020. Influence of NAO on forming the UTCI index in Kłodzko. Theoretical and Ap plied Climatology 142: 1555–1567. DOI 10.1007/s00704 020-03340-y.
  23. Hu F.S., Brown T.A., Curry B.B., Engstrom D.R., 2001. Pro nounced climatic variations in Alaska during the last two millennia. PNAS 98(19): 10552–10556. DOI 10.1073/ pnas.181333798.
  24. Hurrell J.W., 1995. Decadal trends in the North Atlantic Os cillation: regional temperatures and precipitation. Science 269(5224): 676–679. DOI 10.1126/science.269.5224.676.
  25. Hurrell J.W., Kushnir Y., Ottersen G., Visbeck M., 2003. The North Atlantic Oscillation: climatic significance and envi ronmental impact. Geophysical Monograph 134, Ameri can Geophysical Union, Washington D.C. DOI 10.1029/ GM134.
  26. IPCC [Intergovernmental Panel on Climate Change], 2001. Chapter 6. Radiative forcing of climate change. In: Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (eds.), TAR Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cam bridge University Press, Cambridge and New York: 350–416.
  27. IPCC [Intergovernmental Panel on Climate Change], 2007. Technical summary. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller
  28. H.L. (eds.), Climate change 2007: The physical science basic. Contribution of Working Group I to the Fourth Assess ment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York: 1–91.
  29. IPCC [Intergovernmental Panel on Climate Change], 2014. Climate change 2014 synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Re port of the Intergovernmental Panel on Climate Change. IPCC, Geneva Switzerland: 1–151.
  30. Kopp G., Krivova N., Wu C.J., Lean J., 2016. The impact of the revised sunspot record on solar irradiance reconstruc tions. Solar Physics 291(9–10): 2951–2965. DOI 10.1007/ s11207-016-0853-x.
  31. Kożuchowski K., Żmudzka E., 2001. Ocieplenie w Polsce: skala i rozkład sezonowy zmian temperatury powietrza w drugiej połowie XX wieku. Przegląd Geofizyczny 46(1– 2): 81–90.
  32. Kwiatkowski J., 1975. Zasięg fenów sudeckich i ich wpływ na mezoklimat regionów południowo-zachodniej i środ kowej Polski. Przegląd Geofizyczny 20(1): 15–30.
  33. Mann M.E., 2002. Medieval climatic optimum. In: Munn T. (ed.), Encyclopedia of global environmental change, Vol. 1. The Earth system: physical and chemical dimensions of global environmental change. John Willey & Sons, Ltd, Chiches ter: 514–516.
  34. Marsz A.A., 2005. Czy cyrkulacja atmosferyczna jest zdeter minowana i przewidywalna?. In: Bogdanowicz E., Kos sowska-Cezak U., Szkutnicki J. (eds.), Ekstremalne zjawis ka hydrologiczne i meteorologiczne. Wyd. PTGeof. i IMGW, Warszawa: 32–51.
  35. Marsz A.A., 2006. W sprawie niektórych interpretacji skut ków działania Oscylacji Północnego Atlantyku (NAO). Czasopismo Geograficzne 77(1): 220–228.
  36. Marsz A.A., Styszyńska A., 2010. Changes in sea surface temperature of the South Baltic Sea (1854–2005). In: Przy bylak R., Majorowicz J., Brázdil R., Kejna M. (Eds.), The Polish climate in the European context: An historical over view. Springer, Netherlands: 355–374. DOI 10.1007/978 90-481-3167-9_16.
  37. Nazarov A.N., Myglan V.S., Orlova L.A., Ovchinnikov I.Y., 2016. Activity of Maly Aktru Glacier (Сentral Altai) and changes tree line fluctuations in its basin for a historical period. Ice and Snow 56(1): 103–118. DOI 10.15356/2076 6734-2016-1-103-118.
  38. Ojrzyńska H., 2015. Cyrkulacyjne uwarunkowania przestrzenne go rozkładu temperatury powietrza w terenie zróżnicowanym morfologicznie na przykładzie Sudetów. Rozprawy Nau kowe Instytutu Geografii i Rozwoju Regionalnego Uni wersytetu Wrocławskiego 36.
  39. Oreopoulos L., Mlawer E., Delamere J., Shippert T., Cole J., Fomin B., Iacono M., Jin Z., Li J., Manners J., 2012. The continual intercomparison of radiation codes: Results from phase I. Journal of Geophysical Research, Atmospheres 117(D6), D06118. DOI 10.1029/2011JD016821.
  40. Osuchowska-Klein B., 1978. Katalog typów cyrkulacji at mosferycznej. Wydawnictwa Komunikacji i Łączności, Warszawa.
  41. Osuchowska-Klein B., 1991. Katalog typów cyrkulacji atmosferycznej (1976–1990). IMGW, Warszawa.
  42. Philipona R., Behrens K., Ruckstuhl C., 2009. How declining aerosols and rising greenhouse gases forced rapid warm ing in Europe since the 1980s. Geophysical Research Letters 36(2), L02806. DOI 10.1029/2008GL036350.
  43. Savichev A.I., Mironicheva N.P., Tsepelev V.Y., 2015. Oso bennosti kolebaniy atmosfernoy tsirkulyatsii v atlan tiko-yevraziyskom sektore polushariya za posledniye desatiletiya. Uchenye Zapiski RGGMU 39: 120–131.
  44. Semenov V.A., Latif M., Jungclaus J.H., Park W., 2008. Is the observed NAO variability during the instrumental re cord unusual? Geophysical Research Letters 35(11), L11701. DOI 10.1029/2008GL033273.
  45. Szymanowski M., 2004. Miejska wyspa ciepła we Wrocławiu. Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław.
  46. Szymanowski M., 2005. Interactions between thermal ad vection in frontal zones and the urban heat island of Wrocław, Poland. Theoretical and Applied Climatology 82: 207–224. DOI 10.1007/s00704-005-0135-2.
  47. Urban G., Migała K., Pawliczek P., 2018. Sunshine duration and its variability in the main ridge of the Karkonosze Mountains in relation to with atmospheric circulation. Theoretical and Applied Climatology 131: 1173–1189. DOI 10.1007/s00704-017-2035-7.
  48. Ustrnul Z., 2006. Spatial differentiation of air temperature in Poland using circulation types and GIS. International Journal of Climatology 26(11): 1529–1546. DOI 10.1002/ joc.1393.
  49. van Loon H., Rogers J.C., 1978. The seesaw in winter tem peratures between Greenland and Northern Europe. Part I: General description. Monthly Weather Review 106(3): 296–310. DOI 10.1175/1520-0493(1978)106<0296:TSIWT B>2.0.CO;2.
  50. Wójcik R., Miętus M., 2014. Niektóre cechy wieloletniej zmi enności temperatury powietrza w Polsce (1951–2010). Przegląd Geograficzny 86(3): 339–364. DOI 10.7163/ PrzG.2014.3.3.