Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia.
PDF

Keywords

erosivity
IDW
tropical
watershed

How to Cite

Supriyono, S., Utaya, S., Taryana, D., & Handoyo, B. (2021). Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia . Quaestiones Geographicae, 40(3), 125–142. https://doi.org/10.2478/quageo-2021-0028

Abstract

There have been many studies on rainfall erosivity and erosivity density (ED). However, it was not widely developed in Indonesia as a tropical country and has unique precipitation patterns. They are indicators for assessing the potential risk of soil erosion. The Air Bengkulu Watershed is undergoing severe land degradation due to soil erosion. This study aimed to analyze spatial-temporal in rainfall erosivity and ED based on monthly rainfall data (mm). The data used consisted of 19 weather stations during the period 2006–2020 and which are sparsely distributed over the watershed. The analysis was done by using Arnold’s equation. Then, the trend was tested using parametric and non-parametric statistics, and analysed with linear regression equation, and Spearman’s Rho and Mann Kendall’s tests. The spatial distribution of both algorithms was analysed using the inverse distance weighted (IDW) method based on the geographic information system (GIS). Unlike previous research findings, The long-term average monthly rainfall erosivity and ED revealed a general increase and decreasing trend, whereas it was found to be non-signifi- cant when both indices were observed. However, these results indicate a range from 840.94 MJ · mm−1 · ha−1 · h−1 · a−1,552.42 MJ · mm−1 · ha−1 · h−1 · a−1 to 472.09 MJ · mm−1 · ha−1 · h−1 · a−1  in that November month followed by December and April are the most susceptible months for soil erosion. Therefore, The upstream area of the region shows that various anthropogenic activities must be managed properly by taking into account the rainfall erosivity on the environment and that more stringent measures should be followed in soil and water conservation activities.

https://doi.org/10.2478/quageo-2021-0028
PDF

Funding

The authors would like to thank anonymous reviewers for their constructive comments which helped to improve the quality of the paper and thank editor for handling this manuscript. The authors are also thankful for facilities and oth er assistance to the head and staff administrative staff that as Johannes Apoh Damanik and Anang Anwar at BMKG station class I Pulau Baai Bengkulu Province for providing rainfall data free of cost which has been used in this study. The authors are grateful to the Center for Watershed Management and Protected Forests (WMPF) Ketahun Bengkulu Province for providing shp (shape files) Air Bengkulu watershed boundary and several maps. Then to thank Safnil Arsyad, Muhammad Aliman, Karona Cahya Susena and Parwito Parwito for the revision of the article from a linguistic point of view and for her support in a writing at the time before submit manuscript to the international journal.

References

Andriansyah O., Mustikasari R., 2011. Gambaran Umum Permasalahan Pengelolaan Air: DAS Air Bengkulu. Telepak, Bengkulu. Online: www.telapak.org.

Andriyani I., Jourdain D., Lidon B., Soni P., Kartiwa B., 2017. Upland farming system erosion yields and their constraints to change for sustainable agricultural conservation practices: a case study of Land Use and Land Cover (LULC) change in Indonesia. Land Degradation and Development 28(2): 421–430. DOI 10.1002/ldr.2598.

Arnoldus H.M.J., Boodt M.D., Gabriels D., 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. In: Assessment of erosion, 6th ed. John Wiley and Sons Ltd, UK: 127–132.

Arsyad S., 2012. Konservasi Tanah dan Air (Edisi Kedu). IPB Press, Bogor.

Asdak C., 2014. Hidrologi dan Pengelolaan Daerah Aliran Sungai. UGM Perss, Yogyakarta.

Bagwan W.A., 2020. An assessment of rainfall-induced land degradation condition using Erosivity Density (ED) and heatmap method for Urmodi River watershed of Maharashtra, India. Journal of Sedimentary Environments 5(3): 279–292. DOI 10.1007/s43217-020-00014-7.

Ballabio C., Borrelli P., Spinoni J., Meusburger K., Michaelides S., Beguería S., Klik A., Petan S., Janeček M., Olsen P., Aalto J., Lakatos M., Rymszewicz A., Dumitrescu A., Tadić M.P., Diodato N., Kostalova J., Rousseva S., Banasik K., Alewell C., Panagos P., 2017. Mapping monthly rainfall erosivity in Europe. Science of the Total Environment 579(November): 1298–1315. DOI 10.1016/j. scitotenv.2016.11.123.

Barchia M.F., Sulistyo B., Hindarto K.S., Suhartoyo, H., 2020. Assessment of air bengkulu (Indonesia) watershed based on agroecosystem landscape quality and sustainble land use plan. Biodiversitas 21(11): 5422–5430. DOI 10.13057/biodiv/d211150.

Bartlett, M.S., 1992. Properties of sufficiency and statistical tests. 113–126. DOI 10.1007/978-1-4612-0919-5_8.

Baumann J., Arellano M.J.L., Borgman J., 2002. Adaptation of the universal soil loss equation to the tropical pacific coastal region of the Chiapas State, Mexico. In: 12th ISCO Conference, Beijing: 518–523.

Belladona M., Nasir N., 2019. Desain bangunan penahan sedimen sungai di sub das rindu hati kabupaten bengkulu tengah. Jurnal Teknologi 11(1): 17–24. DOI 10.24853/ jurtek.11.1.17-24.

Billah M.M., 2018. Mapping and monitoring erosion-accretion in an alluvial river using satellite imagery – The river bank changes of the Padma River in Bangladesh. Quaestiones Geographicae 37(3): 87–95. DOI 10.2478/quageo-2018-0027.

Borrelli P., Diodato N., Panagos P., 2016. Rainfall erosivity in Italy: a national scale spatio-temporal assessment. International Journal of Digital Earth 9(9): 835–850. DOI 10.1080/17538947.2016.1148203.

Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Van Oost K., Montanarella L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1). DOI 10.1038/s41467-017-02142-7.

Case M., Ardiansyah F., Spector E., 2007. Climate change in indonesia implications for humans and nature. World Wide Fund For Nature (wwf News) 1: 1–13. wwf.panda. org

Diodato N., Bellocchi G. 2012. Decadal modelling of rainfall-runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices. Global and Planetary Change 86–87, 79–91. DOI 10.1016/j.gloplacha.2012.02.002.

Djalante R., Jupesta J., Aldrian E., 2021. Climate change research, policy and actions in Indonesia (Springer C). Springer Nature Switzerland AG. DOI 10.1007/978-3-03055536-8_1.

Duulatov E., Chen X., Orozbaev G.I.R., Mukanov Y., Amanambu A.C., 2021. Current and future trends of rainfall erosivity and soil erosion in Central Asia. Springer Nature Switzerland AG, Switzerland. DOI 10.1007/978-3-03063509-1.

Eddy H., Lestari S., 2007. Analisis Variabilitas Curah Hujan Di Sumatera Barat Dan Selatan Dikaitkan Dengan Kejadian DIpole Mode. Lapan 4(2): 91–106. Online: http:// jurnal.lapan.go.id/index.php/jurnal_sains/article/ download/666/584.

Fenta A.A., Yasuda H., Shimizu, K., Haregeweyn, N., Kawai, T., Sultan, D., Ebabu K., Belay, A. S., 2017. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrological Processes 31(25): 4555–4567. DOI 10.1002/hyp.11378.

Godone D., Stanchi S., 2011. Soil erosion issues in agriculture edited by Danilo Godone and Silvia Stanchi. Janeza Trdine, Croatia: 9, 51000 Rijeka, Croatia Copyright. DOI 10.5772/926.

Gunawan G., Besperi B., Purnama L., 2020. Analisis Debit Banjir Rancangan Sub DAS Air Bengkulu Menggunakan Analisis Frekuensi dan Metode Distribusi. Jurnal Ilmiah Rekayasa Sipil 17(1): 1–9. DOI 10.30630/jirs.17.1.298.

Hanel M., Máca P., Bašta P., Vlnas R., Pech P., 2016. Rainfall erosivity factor in the Czech Republic and its Uncertain ty. Hydrology and Earth System Sciences Discussions (May): 1–24. DOI 10.5194/hess-2016-158.

Hermawan E., Komalaningsih K., 2008. Karakteristik Indian Ocean Dipole Mode Di Samudera Hindia Hubungan-Nya Dengan Perilaku Curah Hujan Di Kawasan Sumatera Barat Berbasis Analisis Mother Wavelet. Jurnal Sains Dirgantara 5(2): 109–129.

Hudson N., 1976. Soil conservation. 2rd edn. Cornell University Press, Ithaca, New York, USA: 1–8.

Kendall M.G., 1948. Rank correlation methods. Rank correlation methods. Griffin, Oxford, England.

Lee M.-H., Hsu I.-P., 2020. Estimation of the annual rainfall erosivity index based on hourly rainfall data in a tropical region. Soil and Water Research 2021(1). DOI 10.17221/25/2020-swr.

Letsoin S.M.A., Herak D., Rahmawan F., Purwestri R.C., 2020. Land cover changes from 1990 to 2019 in Papua, Indonesia: Results of the remote sensing imagery. Sustainability (Switzerland) 12(16), 1–18. DOI 10.3390/su12166623. Liu H., Zhang G., Zhang P., Zhu S., 2020. Spatial distribution and temporal trends of rainfall erosivity in three gorges reservoir area of China. Mathematical Problems in Engineering 2020. DOI 10.1155/2020/5302679.

Ma K., Huang X., Liang C., Zhao H., Zhou X., Wei X., 2020. Effect of land use/cover changes on runoff in the Min River watershed. River Research and Applications (August 2019): 1–11. DOI 10.1002/rra.3608.

Ma X., He Y., Xu J., Van Noordwijk M., Lu X., 2014. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed. Catena 121: 248–259. DOI 10.1016/j.catena.2014.05.017.

Mahmud M., Kusumandari, A., Sudarmadji S., Widjajanti, N., Supriyatno, N., 2019. Conservation design and scenario for flood mitigation on Arui Watershed, Indonesia. Indonesian Journal of Geography 51(2): 261–272. DOI 10.22146/ijg.37296.

Mann H.B., 1945. Non-parametric test against trend. Econometrica 13(3): 245–259. DOI 10.2307/1907187.

Mase L.Z., 2020. Slope stability and erosion-sedimentation analyses along subwatershed of Muara Bangkahulu River in Bengkulu City, Indonesia. E3S Web of Conferences 2(3002): 148. DOI 10.1051/e3sconf/202014803002.

Mohtar Z.A., Yahaya A.S., Ahmad, F., 2015. Rainfall erosivity estimation for Northern and Southern peninsular Malaysia using Fourneir indexes. Procedia Engineering 125: 179–184. DOI 10.1016/j.proeng.2015.11.026.

Mondal A., Khare D., Kundu S., 2016. Change in rainfall erosivity in the past and future due to climate change in the central part of India. International Soil and Water Conservation Research 4(3): 186–194. DOI 10.1016/j. iswcr.2016.08.004.

Morgan R.P.C., Nearing M.A., 2011. Handbook of erosion modelling. DOI 10.1002/9781444328455.

Nasir Ahmad N.S.B., Mustafa F.B., Muhammad Yusoff S.@.Y., Didams G., 2020. A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research 8(2): 103–115. DOI 10.1016/j.iswcr.2020.04.001.

Nearing M.A., Yin S.Q., Borrelli P., Polyakov V.O., 2017. Rainfall erosivity: An historical review. Catena 157(March): 357–362. DOI 10.1016/j.catena.2017.06.004.

Oliveira P.T.S., Wendland E., Nearing M.A., 2013. Rainfall erosivity in Brazil: A review. Catena 100: 139–147. DOI 10.1016/j.catena.2012.08.006.

Panagos P., Ballabio C., Borrelli P., Meusburger K., Klik A., Rousseva, S., Perčec Tadić M., Michaelides S., Hrabalíková M., Olsen P., Aalto J., Lakatos M., Rymszewicz A., Dumitrescu A., Beguería S., Alewell C., 2015. Rainfall erosivity in Europe. Science of the Total Environment 511(January): 801–814. DOI 10.1016/j.scitotenv.2015.01.008.

Panagos P., Ballabio C., Borrelli P., Meusburger K., 2016a. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. Catena 137: 161–172. DOI 10.1016/j. catena.2015.09.015.

Panagos P., Borrelli P., Spinoni J., Ballabio C., Meusburger K., Beguería S., Klik A., Michaelides S., Petan S., Hrabalíková M., Olsen P., Aalto J., Lakatos M., Rymszewicz A., Dumitrescu A., Perčec Tadić M., Diodato N., Kostalova J., Rousseva S., Banasik K., Alewell C., 2016b. Monthly rainfall erosivity: Conversion factors for different time resolutions and regional assessments. Water (Switzerland), 8(4). DOI 10.3390/w8040119.

Panagos P., Borrelli P., Meusburger K., Yu B., Klik A., Lim K. J., Yang J.E, Ni J., Miao C., Chattopadhyay N., Sadeghi S.H., Hazbavi Z., Zabihi M., Larionov G.A., Krasnov S.F., Garobets A., Levi Y., Erpul G., Birkel C., Hoyos N., Naipal V., Oliveira P.T.S., Bonilla C.A., Meddi M., Nel W., Dashti H., Boni M., Diodato N., Ballabio C., 2017. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports 7(1): 1–12. DOI 10.1038/s41598-017-04282-8.

Satmaidi E., Muthia A.A., Wulandari W., 2018. Konsep Hukum Pengelolaan Tambang Batubara Berkelanjutan Berdasarkan Pendekatan Daerah Aliran Sungai (Das) Di Provinsi Bengkulu. Bina Hukum Lingkungan 2(2): 198– 214. DOI 10.24970/jbhl.v2n2.16.

Schmidt S., Alewell C., Panagos P., Meusburger K., 2016. Regionalization of monthly rainfall erosivity patternsin Switzerland. Hydrology and Earth System Sciences 20(10): 4359–4373. DOI 10.5194/hess-20-4359-2016.

Shapiro S.S., Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52(3–4): 591–611. DOI 10.1093/biomet/52.3-4.591.

Shin J.Y., Kim T., Heo J.H., Lee J.H., 2019. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. Catena 176(July 2018): 125–144. DOI 10.1016/j.catena.2019.01.005.

Singh G., Panda R.K., 2017. International soil and water conservation research grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing : A case study in the Kapgari watershed, India. International Soil and Water Conservation Research 5(3): 202–211. DOI 10.1016/j. iswcr.2017.05.006.

Singh J., Singh O., 2020. Assessing rainfall erosivity and erosivity density over a western Himalayan catchment, India. Journal of Earth System Science 129(1): 1–22. DOI 10.1007/s12040-020-1362-8.

Sulistyo B., 2011. Pengaruh Erosivitas Hujan yang Diperoleh dari Rumus yang Berbeda Terhadap Pemodelan Erosi Berbasis Raster. Agritech 31(3): 250–259.

Sulistyo B., Barchia M.F., Hindarto K.S., Listyaningrum N., 2020. The effect of land unit elimination on the conservation activity plan at Air Bengkulu Watershed, Bengkulu Province. Indonesian Journal of Geography 52(2). DOI 10.22146/ijg.48578.

Supriyono S., Yanmesli Y., 2016. Analisis Spasial Perubahan Bentuk Fisik Sungai Melalui Integrasi Citra Landsat Dan GIS Di Sub DAS Hilir Sungai Bengkulu. Jurnal Georafflesia: Artikel Ilmiah Pendidikan Geografi 1(1): 11–22.

Supriyono S., Utaya S., 2019. Study of quality changes and determination of water pollution index at river watershed. Sumatra Journal of Disaster, Geography and Geography Education 3(2): 20–33. DOI 10.24036/sjdgge.v2i1.136.

Supriyono S., Wira Citra F., Sulistyo B., Faiz Barchia M., 2017. Mapping erosivity rain and spatial distribution of rainfall in catchment area Bengkulu River Watershed. Journal of Environment and Earth Science 7(10): 153–164.

Templeton G.F., 2011. A two-step approach for transforming continuous variables to normal: Implications and recommendations for IS research. Communications of the Association for Information Systems 28(1): 41–58. DOI 10.17705/1cais.02804.

Terassi P.M. de B., de Oliveira-Júnior J.F., de Gois G., Oscar Júnior A.C., Sobral, B.S., Biffi V.H.R., Blanco C.J.C., Filho W.L.F.C., Vijith, H., 2020. Rainfall and erosivity in the municipality of Rio de Janeiro – Brazil. Urban Climate 33(December 2019): 100637. DOI 10.1016/j.uclim.2020.100637.

Tokola T., 2000. The influence of field sample data location on growing stock volume estimation in Landsat TMbased forest inventory in eastern Finland. Remote Sensing of Environment 74(3): 422–431. DOI 10.1016/S00344257(00)00135-8.

Tunas I.G., 2005. Prediksi Erosi Lahan Das Bengkulu Dengan Sistem Informasi Geografis (SIG). Jurnal SMARTek 3(2): 607–620.

Vijith H., Dodge-Wan, D., 2019. Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo. Environmental Monitoring and Assessment 191(8). DOI 10.1007/s10661-019-7604-z.

Wild A., 1985. Soil use and management. Soil Use and Management 1(1): 2–2. DOI 10.1111/j.1475-2743.1985.tb00639.x.

Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses – A guide to conservation planning. Department Of Agriculture (Agricultur, Vol. 537), Washinton D.C.

Xu Z., Pan B., Han M., Zhu J., Tian L., 2019. Spatial–temporal distribution of rainfall erosivity, erosivity density and correlation with El Niño–Southern Oscillation in the Huaihe River Basin, China. Ecological Informatics 52(April): 14–25. DOI 10.1016/j.ecoinf.2019.04.004.

Yin S., Nearing M.A., Borrelli P., Xue X., 2017. Rainfall erosivity: An overview of methodologies and applications. Vadose Zone Journal 16(12): vzj2017.06.0131. DOI 10.2136/ vzj2017.06.0131.

Yu B., Bonell, M., Bruijnzeel, L.A., 2005. Process-based erosion modelling: Promises and progress. In: Forests, water and people in the humid tropics. Cambridge University Press, UK: 790–810. DOI 10.1017/CBO9780511535666.041.

Zhang Y., Chao Y., Fan R., Ren F., Qi B., Ji K., Xu B., 2021.

Spatial-temporal trends of rainfall erosivity and its implication for sustainable agriculture in the Wei River Basin of China. Agricultural Water Management 245(January): 106557. DOI 10.1016/j.agwat.2020.106557.

Zhang Y.G., Nearing M.A., Zhang X.C., Xie Y., Wei H., 2010. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. Journal of Hydrology 384(1–2): 97–106. DOI 10.1016/j.jhydrol.2010.01.013.

Zhu D., Xiong K., Xiao H., 2021. Multi-time scale variability of rainfall erosivity and erosivity density in the karst region of southern China, 1960–2017. Catena 197(December 2019): 104977. DOI 10.1016/j.catena.2020.104977.

Zokaib S., Naser G., 2011. Impacts of land uses on runoff and soil erosion A case study in Hilkot watershed Pakistan. International Journal of Sediment Research 26(3): 343–352. DOI 10.1016/S1001-6279(11)60098-X.