Soil erosion susceptibility mapping of Imo River Basin using modified geomorphometric prioritisation method

Main Article Content

Peter C. Nwilo
Caleb O. Ogbeta
Olagoke E. Daramola
Chukwuma J. Okolie
Michael J. OrJi


Gullies and other forms of erosion have been the greatest environmental problem and catastrophe in most high- and low-income countries. The challenge posed by soil erosion has compromised agricultural productivity, en-vironmental biodiversity and food safety for the world’s population. It is important to identify vulnerable areas to soil erosion in each region to initiate remedial measures. This study demonstrates the use of watershed morphometry coupled with weighted sum analysis (WSA) to estimate the soil erosion susceptibility of the Imo River Basin sub-wa-tersheds (SWs) in South-Eastern Nigeria using satellite remote-sensing data and geographic information system (GIS) analysis. To this end, Shuttle Radar Topography Mission (SRTM), a Digital Elevation Model (DEM) with 30 m spatial resolution was used to extract and analyse 18 morphometric parameters including basic, linear, shape and relief. The method of receiver operating characteristics (ROC) curves was used to validate the model’s prediction accuracy. This morphometry-based analysis resulted in the SWs being classified into zones of low, medium, high and very high erosion susceptibility. With regard to erosion susceptibility, 41.51% of the basin (2494.68 km2) is in the very high pri-ority zone; while 10.50%, 44.33% and 3.66% of the basin are in the high, medium and low priority zones respectively. Validation of the final erosion susceptibility map showed a prediction accuracy of 81%. The use of satellite imagery and morphometric analysis in this study was cost- and time-effective for identifying areas susceptible to soil erosion.


Download data is not yet available.

Article Details

How to Cite
Nwilo, P. C., Ogbeta, C. O., Daramola, O. E., Okolie, C. J., & OrJi, M. J. (2021). Soil erosion susceptibility mapping of Imo River Basin using modified geomorphometric prioritisation method. Quaestiones Geographicae, 40(3), 143–162.


  1. Adinarayana J., Krishna R.N., Rao K., 1995. An integrated approach for prioritization of watersheds. Journal of Environmental Management 44: 375–384. DOI 10.1016/S0301-4797(95)90374-7.
  2. Agarwal C.S., 1998. Study of drainage pattern through aerial data in Naugarh area of Varanasi district. U.P. J of Indian Soc of Rem Sensing 26: 169–175. DOI 10.1007/bf02990795.
  3. Akpokodje E.G., Tse A.C., Ekeocha N., 2010. Gully erosion geohazards in Southeastern Nigeria and management implications. Scientia Africana 9(1): 20–36.
  4. Alencar P.H.L., de Araújo J.C., dos Santos Teixeira A., 2020. Physically based model for gully simulation: Application to the Brazilian semiarid region. Hydrology and Earth System Sciences 24(8): 4239–4255. DOI 10.5194/hess-24-4239-2020.
  5. Ali U., Ali S.A., Ikbal J., Bashir M., Fadhi M., Ahmad M., Al Dharab H., Ali S., 2018. Soil erosion risk and flood behavior assessment of Sukhang catchment, Kashmir basin: Using GIS and remote sensing. International Journal of Remote Sensing GIS 7(1): 1–8. DOI 10.4172/2469-4134.1000230.
  6. Altaf S., Meraj G., Romshoo S.A., 2014. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed. Environmental Monitoring and Assessment 186(12): 8391–8412. DOI 10.1007/s10661-014-4012-2.
  7. Alvarado A., Esteller M.V., Quentin E., Exposito J.L., 2016. Multi-criteria decision analysis and GIS approach for prioritization of drinking water utilities protection based on their vulnerability to contamination. Water Resource Management 30: 1549–1566. DOI 10.1007/s11269-016-1239-4.
  8. Amangabara G.T., 2015. Drainage morphology of Imo basin in the Anambra–Imo river basin area, of Imo state, southern Nigeria. Journal of Geography, Environment and Earth Science International 3(1): 1–11. DOI 10.9734/jgeesi/2015/17114.
  9. Amangabara G.T., Njoku J.D., Iwuji M.C. 2018. People’s perception of soil erosion and its impact in Imo State, Nigeria. IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN (P): 2347–4580.
  10. Amangabara G.T., Njoku J.D., Obenade M., 2015. Applying satellite remote sensing and GIS tools in the study of gully erosion. Journal of Scientific Research and Reports 4(3): 253–264. DOI 10.9734/jsrr/2015/12753.
  11. Ameri A.A., Pourghasemi H.R., Cerda A., 2018. Erodibility prioritization of sub-watersheds using morphometric parameters analysis and its mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision-making models. Science of the Total Environment 613–614: 1385–1400. DOI 10.1016/j.scitotenv.2017.09.210.
  12. Anejionu O.C.D., Nwilo P.C., Ebinne E.S., 2013. Long term Assessment and mapping of erosion hotspots in southeastern Nigeria. A paper presented at FIG Working Week 2013 Environment for Sustainability Abuja, Nigeria, 6th–10th May 2013.
  13. Arshad M.A., Martin S., 2002. Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment 88(2): 153–160. DOI 10.1016/ s0167-8809(01)00252-3.
  14. Asfaw D., Workineh G., 2019. Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation. International Soil and Water Conservation Research 7(2): 150–157. DOI 10.1016/j. iswcr.2019.02.003.
  15. Bernard J., Bingner R., Dabney S., Langendoen E., Lemunyon J., Merkel W., Theurer F., Wells R.R., Widman N., Wilson G., 2010. Ephemeral gully erosion – A national resource concern. National Sedimentation Laboratory Technical Research Rep, 69.
  16. Biswas S., Sudhakar S., Desai V.R., 1999. Prioritization of subwatersheds based on morphometric analysis of drainage basin, district Midnapore, West Bengal. Journal of the Indian Society of Remote Sensing 27(3): 155–166. DOI 10.1007/bf02991569.
  17. Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K., Modugno S., Schütt B., Ferro V., Bagarello V., Van Oost K., Montanarella L., Panagos P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1): 1–13. DOI 10.1038/s41467-017-02142-7.
  18. Borrelli P., Robinson D.A., Panagos P., Lugato E., Yang J.E., Alewell C., Wuepper D., Montanarella L., Ballabio C., 2020. Land use and climate change impacts on global soil erosion by water (2015–2070). Proceedings of the National Academy of Sciences 117(36): 21994–22001. DOI 10.1073/ pnas.2001403117.
  19. Capra A., Scicolone B., 2002. SW – Soil and water: Ephemeral gully erosion in a wheat-cultivated area in Sicily (Italy). Biosystems Engineering 83: 119–126. DOI 10.1006/ bioe.2002.0092.
  20. Carter J.V., Pan J., Rai S.N., Galandiuk S., 2016. ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves. Surgery 159(6): 1638–1645. DOI 10.1016/j.surg.2015.12.029.
  21. Channels Television, 2018, September 1. Gully Erosion Ravages Three Communities in Imo State [Video file]. Online:
  22. Chiemelu N., Okeke F., Nwosu K., Ibe C., Ndukwu R., Ugwuotu A. 2013. The role of surveying and mapping in erosion management and control: A case of Omagba erosion site, Onitsha, Anambra State, Nigeria. Journal of Environment and Earth Sciences 3(11): 11–18.
  23. Chopra R., Dhiman R.D., Sharma P.K., 2005. Morphometric analysis of sub-watersheds in Gurdaspur District, Punjab Using Remote Sensing and GIS Techniques. Journal of the Indian Society of Remote Sensing 33: 531–539. DOI 10.1007/ bf02990738.
  24. Chuenchum P., Xu M., Tang W., 2020. Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. International Soil and Water Conservation Research 8(3): 213–227. DOI 10.1016/j.iswcr.2020.06.006.
  25. Dar R.A., Chandra R., Romshoo S.A., 2013. Morphotectonic and Lithostratigraphic analysis of Intermontane Karewa basin of Kashmir Himalayas, India. Journal of Mountain Science 10(1): 1–15. DOI 10.1007/s11629-013-2494-y.
  26. De Araujo J.C., Güntner A., Bronstert A., 2006. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrological Sciences Journal 51(1): 157–170. DOI 10.1623/hysj.51.1.157.
  27. Egboka B.C.E., Okpoko E.I., 1984. Gully erosion in the Agulu-Nanka region of Anambra State, Nigera. Challenges in African Hydrology and Water Resources (Proceedings of the Harare Symposium). IAHS Publ. No. 144.
  28. Ezezika O.C., Adetona O., 2011. Resolving the gully erosion problem in Southeastern Nigeria: Innovation through public awareness and community-based approaches. Journal of Soil Science and Environmental Management 2(10): 286–291.
  29. Farhan Y., Anaba O., 2016. Watershed prioritization based on morphometric analysis and soil loss modeling in Wadi Kerak (Southern Jordan) using GIS techniques. International Journal of Plant and Soil Science 10: 1–18. DOI 10.9734/ijpss/2016/25321.
  30. Farhan Y., Anbar A., Al-Shaikh N., Mousa R., 2017. Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences 8(1): 113–148. DOI 10.4236/as.2017.81009.
  31. Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D., Alsdorf D., 2007. The shuttle radar topography mission-RG2004. Reviews of Geophysics 45(2): 1–33. DOI 10.1029/2005rg000183.
  32. Fayas C.M., Abeysingha N.S., Nirmanee K.G.S., Samaratunga D., Mallawatantri A. 2019. Soil loss estimation using rusle model to prioritize erosion control in KELANI river basin in Sri Lanka. International Soil and Water Conservation Research 7(2): 130–137. DOI 10.1016/j.iswcr.2019.01.003.
  33. Forkuor G., Maathuis B., 2012. Comparison of SRTM and ASTER derived digital elevation models over two regions in Ghana – Implications for Hydrological and Environmental Modeling. Studies on Environmental and Applied Geomorphology. DOI 10.5772/28951.
  34. Gajbhiye S., Mishra S.K., Pandey A., 2014. Prioritizing erosion-prone area through morphometric analysis: An RS and GIS perspective. Applied Water Science 4(1): 51–61. DOI 10.1007/s13201-013-0129-7.
  35. Gao P., 2013. Rill and gully development processes. In: Shro-der, J. (Editor in Chief), Marston, R.A., Stoffel, M. (eds.), Treatise on geomorphology. Vol. 7, Mountain and Hillslope Geomorphology, Academic Press, San Diego, CA: 122–131. DOI 10.1016/B978-0-12-374739-6.00156-1.
  36. Harlin J.M., Wijeyawickrema C., 1985. Irrigation and ground-water depletion in Caddo county, Oklahoma. JAWRA Journal of the American Water Resources Association 21(1): 15–22. DOI 10.1111/j.1752-1688.1985.tb05346.x.
  37. Hlaing K.T., Haruyama S., Aye M.M., 2008. Using GIS-based distributed soil loss modeling and morphometric analysis to prioritize watershed for soil conservation in Bago river basin of Lower Myanmar. Frontiers of Earth Science China. 2(4): 465–478. DOI 10.1007/s11707-008-0048-3.
  38. Horton R.E., 1932. Drainage basin characteristics. Transactions of the American Geophysical Union 13: 350–361. DOI 10.1029/tr013i001p00350.
  39. Horton R.E., 1940. An approach toward a physical interpretation of infiltration capacity. Proc. Soil Sci. Soc. Amer. 5: 399–417. DOI 10.2136/sssaj1941.036159950005000C0075x.
  40. Horton R.E., 1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56. 275–370. DOI 10.1130/0016-7606(1945)56[275:EDOS-AT]2.0.CO;2.
  41. Howard A.D., 1990. Role of hypsometry and planform in basin hydrologic response. Hydrological Processes 4(4): 373–385. DOI 10.1002/hyp.3360040407.
  42. Jang T., Vellidis G., Hyman J.B., Brooks E., Kurkalova L.A., Boll J., Cho J., 2013. Model for prioritizing best management practice implementation: Sediment load reduction. Environmental Management 51: 209–224. DOI 10.1007/ s00267-012-9977-4.
  43. Javed A., Khanday M.Y., Ahmed R., 2009. Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS techniques. Journal of the Indian society of Remote Sensing 37(2): 261. DOI 10.1007/s12524-009-0016-8.
  44. Jawaharraj N., Kumaraswami K., Ponnaiyan K., 1998. Morphometric analysis of the Upper Noyil basin (Tamil Nadu). Journal of the Deccan Geographical Society 36: 1529.
  45. Kabite G., Gessesse B., 2018. Hydro-geomorphological characterization of Dhidhessa River basin, Ethiopia. International Soil and Water Conservation Research 6(2): 175–183. DOI 10.1016/j.iswcr.2018.02.003.
  46. Kadam A.K., Jaweed T.H., Kale S.S., Umrikar B.N., Sankhua R.N., 2019. Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics, Natural Hazards and Risk 10(1): 986– 1006. DOI 10.1080/19475705.2018.1555189.
  47. Kumar P., Joshi V., 2016. Characterization of hydro geological behavior of the upper watershed of River Subarnarekha through Morphometric analysis using Remote Sensing and GIS approach. International Journal of Environmental Sciences 6(4): 429–447.
  48. Kumaraswami K., Sivagnanam N., 1998. Morphometric charecteristics of the vaippar Basin, Tamil Nadu: A qualitative approach. Indian Journal of landscape System and Ecological Studies 11(11): 94101.
  49. Lal R., 2003. Soil erosion and the global carbon budget. Environment international 29(4): 437–450. DOI 10.1016/S0160-4120(02)00192-7.
  50. Liu X.-l., Tang C., Ni H.-Y., Zhao Y., 2016. Geomorphologic analysis and physico-dynamic characteristics of Zhatai-Gully debris flows in SW China. Journal of Mountain Science 13(1): 137–145. DOI 10.1007/s11629-014-3267-y.
  51. Macka Z., 2001. Determination of texture of topography from large scale contour maps. Geografski Vestnik 73(2): 53–62.
  52. Maidment D.R., 2002. ArcHydro GIS for water resources. Esri Press, California.
  53. Miller V.C., 1953. A quantitative geomorphic study of drain-age basin characteristics in the Clinch Mountain area, Virginia and Tennessee, Technical Report 3 NR 389–402, Columbia University, Department of Geology, ONR, New York, NY, USA.
  54. Mohammed A., Adugna T., Takala W., 2018. Morphometric analysis and prioritization of watersheds for soil erosion management in Upper Gibe catchment. Journal of Degraded and Mining Lands Management 6(1): 1419–1426. DOI 10.15243/jdmlm.2018.061.1419.
  55. Montanarella L., Pennock D., McKenzie N., Badraoui M., Chude V., Baptista I., Mamo T., Yemefack M., Aulakh M.S., Yagi K., Hong S.Y., Vijarnsorn P., Zhang G.-L., Arrouays D., Black H., Krasilnikov P., Sobocká J., Alegre J., Henriquez C.R., Mendonça-Santos M. de L., Taboada M., Espinosa-Victoria D., AlShankiti A., AlaviPanah S.K., Elsheikh E.A.El M., Hempel J., Arbestain M.C., Nachtergaele F., Vargas R., 2016. World’s soils are under threat. Soil 2: 79–82. DOI 10.5194/soil-2-79-2016.
  56. Montgomery D.R., Dietrich W.E., 1992. Channel initiation and the problem of landscape scale. Science 255: 826–830. DOI 10.1126/science.255.5046.826.
  57. Nag S., Chakraborty S., 2003. Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing 31(1): 25–35. DOI 10.1007/BF03030749.
  58. NASA JPL, 2014. U.S. Releases Enhanced Shuttle Land Elevation Data. NASA Jet Propulsion Laboratory (JPL). http:// (accessed 21 December 2020).
  59. Nautiyal M.D., 1994. Morphometric analysis of drainage basin, district Dehradun, Uttar Pradesh. Journal of Indian Society of Remote Sensing. 22(4): 252–262. DOI 10.1007/ BF03026526.
  60. Nelson H.D., Huffman L.H., Fu R., Harris E.L., 2005. Force USPST. Genetic risk assessment and BRCA mutation testing for breast and ovarian cancer susceptibility: Systematic evidence review for the U.S. Preventive Services Task Force. Annals of Internal Medicine 143: 362–79. DOI 10.7326/0003-4819-143-5-200509060-00012.
  61. Nigeria – Erosion and Watershed Management Project, 2012. World Bank Group, Washington, D.C. Online: documents. nigeria-erosion-and-watershed-management-project (accessed 13 May 2021).
  62. NIMET [Nigeria Meteorological Agency], 2019. Seasonal Rainfall Prediction (SRP). Periodic Monitoring Report, Saturday, 2 February, 2019. COMPLETE.pdf?dl=0; (accessed 18 December 2019)
  63. Nkonya E., Anderson W., Kato E., Koo J., Mirzabaev A., von Braun J., Meyer S., 2016. Global cost of land degradation economics of land degradation and improvement – A global assessment for sustainable development. Springer, Cham: 117–165. DOI 10.1007/978-3-319-19168-3_6.
  64. Nwilo P.C., Olayinka D.N., Uwadiegwu I., Adzandeh A.E., 2011. An assessment and mapping of gully erosion hazards in Abia State: A GIS approach. Journal of Sustainable Development 4(5): 196. DOI 10.5539/jsd.v4n5p196.
  65. Obiadi I.I., Nwosu C.M., Ajaegwu N.E., Anakwuba E.K., Onuigbo N.E., Akpunonu E.O., Ezim O.E. 2011. Gully Erosion in Anambra State, South East Nigeria: Issues and solution. International Journal of Environmental Sciences 2(2): 795–804.
  66. Ofomata G.E.K., 1965. Factors of soil erosion in the Enugu area of Nigeria. The Nigerian Geographic Journal 8(1): 45–59.
  67. Ogbukagu I.K.N., 1976. Soil erosion in the northern parts of the Awka-Orlu Uplands, Nigeria. Nigerian Journal. Mining & Geology 13: 6–19.
  68. Okagbue C.O., Uma K.O., 1987. Performance of gully erosion control measures in southeastern Nigeria. Forest Hydrology and Watershed Management (Proceedings of the Vancouver Symposium), Actes du Co11oque de Vancouver, Publ. No. 167.
  69. Okali D., Okpara E., Olawoye J., 2001. The case of Aba and its region, southeastern Nigeria. International Institute for Environment and Development 4: 12–20.
  70. Okereke C.N., Onu N.N., 2012. Mapping gully erosion using remote sensing technique: A case study of Okigwe Area, Southeastern Nigeria. International Journal of Engineering Research and Applications 2(3): 1955–1967.
  71. Panagos P., Borrelli P., Robinson D., 2019. FAO calls for actions to reduce global soil erosion. Mitigation and Adaptation Strategies for Global Change, 25(5): 789–790. DOI 10.1007/s11027-019-09892-3.
  72. Patel A., Katiyar S., Prasad V., 2016. Performances evaluation of different open source DEM using Differential Global Positioning System (DGPS). The Egyptian Journal of Remote Sensing and Space Science 19(1): 7–16. DOI 10.1016/j. ejrs.2015.12.004.
  73. Patel D., Gajjar C., Srivastava P., 2013. Prioritization of Male-sari mini-watersheds through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences. 69: 2643–2656. DOI 10.1007/s12665-012-2086-0.
  74. Patel D.P., Dholakia M.B., Naresh N., Srivastava P.K., 2012. Water harvesting structure positioning by using geo-visualization concept and prioritization of Mini-Watersheds through morphometric analysis in the lower Tapi Basin. Journal of the Indian Society of Remote Sensing 40(2): 299–DOI 10.1007/s12524-011-0147-6.
  75. Patton P.C., Baker V.R., 1976. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research 12(5): 941–952. DOI 10.1029/WR012i005p00941.
  76. Pinheiro E.A.R., Metselaar K., de Jong van Lier Q., de Araújo J.C., 2016. Importance of soil-water to the Caatinga biome, Brazil. Ecohydrology 9(7): 1313–1327. DOI 10.1002/ eco.1728.
  77. Poesen J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43(1): 64–84. DOI 10.1002/esp.4250.
  78. Poesen J., Nachtergaele J., Verstraeten G., Valentin C., 2003. Gully erosion and environmental change: Importance and research needs. Catena 50(2–4): 91–133. DOI 10.1016/ S0341-8162(02)00143-1.
  79. Pontius R.G., Schneider L.C., 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment 85(1–3): 239–248. DOI 10.1016/S0167-8809(01)00187-6.
  80. Prasad R., Mondal N., Banerjee P., Nandakumar M., Singh V., 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology 55(3): 467–475. DOI 10.1007/s00254-007-0992-3.
  81. Rahaman S.A., Ajeez S.A., Aruchamy S., Jegankumar R., 2015. Prioritization of sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system – A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia 4: 1322–1330. DOI 10.1016/j.aqpro.2015.02.172.
  82. Ratnam K.N., Srivastava Y., Rao V.V., Amminedu E., Murthy K., 2005. Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing 33(1): 25. DOI 10.1007/ BF02989988.
  83. Rawat K.S., Tripathi V.K., Mishra A.K., 2014. Sediment yield index mapping and prioritization of Madia subwater-shed, Sagar District of Madhya Pradesh (India). Arabian Journal of Geosciences 7(8): 3131–3145. DOI 10.1007/ s12517-013-1007-1.
  84. Sartori M., Philippidis G., Ferrari E., Borrelli P., Lugato E., Montanarella L., Panagos P., 2019. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy 86: 299–312. DOI 10.1016/j.landusepol.2019.05.014.
  85. Schumm S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America 67: 597–646. DOI 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.
  86. Singh V., Singh U., 2011. Basin Morphometry of Maingra River, district Gwalior, Madhya Pradesh, India. International journal of Geomatics and Geosciences 1(4): 891–902.
  87. Sreedevi P.D., Srinivasalu S., Kesava Raju K., 2001. Hydrogeomorphological and groundwater prospects of the Pageru River basin by using remote sensing data. Environmental Geology 40(8): 1088–1094. DOI 10.1007/ s002540100295.
  88. Srivastava V.K., 2003. Role of GIS in natural resources management. In: Thakur B. (ed.), Perspectives in resource management in developing countries. Concept Publishing Company, New Delhi: 479–484.
  89. Strahler A.N., 1950. Equilibrium theory of erosional slopes approached by frequency distribution analysis; Part II. American Journal of Science, 248(11): 800–814. DOI 10.2475/ajs.248.11.800.
  90. Strahler A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913–920. DOI 10.1029/TR038i006p00913.
  91. Strahler A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Chow V.T. (ed.), Handbook of applied hydrology. McGraw Hill Book Company, New York: 4–11.
  92. Strahler A.N., 1968. Quantitative Geomorphology. In Faibridge, R.W (ed.), The Encyclopedia of Geomorphology, Reinhold Book Crop., New York: 898–912. DOI 10.1007/3-540-31060-6_304.
  93. Sun G., Ranson K.J., Kharuk V.I., Kovacs K., 2003. Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment 88(4): 401–411. DOI 10.1016/j.rse.2003.09.001.
  94. Vaidya N., Kuniyal J.C., Chauhan R., 2013. Morphometric analysis using Geographic Information System (GIS) for sustainable development of hydropower projects in the lower Satluj river catchment in Himachal Pradesh, India. International journal of Geomatics and Geosciences 3(3): 464–473.
  95. Valentin C., Poesen J., Li Y., 2005. Gully erosion: Impacts, factors and control. Catena 63(2–3): 132–153. DOI 10.1016/j. catena.2005.06.001.
  96. Vanmaercke M., Poesen J., Van Mele B., Demuzere M., Bruynseels A., Golosov V., Bezerra J.F.R., Bolysov S., Dvinskih A., Franki A., Fuseina Y., Guerra A.J.T., Haregeweyn N., Ionita I., Imwangana F.M., Moeyersons J., Moshe I., Sam ani A.Z., Niacșu L., Rysin I., Ryzhov Yu.V., Yermolaev O.P., Frankl A., 2016. How fast do gully headcuts retreat? EarthScience Reviews 154: 336–355. DOI 10.1016/j.earsci-rev.2016.01.009.
  97. Verstraeten G., Bazzoffi P., Lajczak A., Rãdoane M., Rey F., Poesen J., de Vente J., 2006. Reservoir and pond sedi-mentation in Europe. Soil Erosion in Europe 759–774. DOI 10.1002/0470859202.ch54.
  98. Vollmer D., Pribadi D.O., Remondi F., Rustiadi E., Grêt-Regamey A., 2016. Prioritizing ecosystem services in rapidly urbanizing river basins: A spatial multi-criteria analytic approach. Sustainable Cities and Society 20: 237–252. DOI 10.1016/j.scs.2015.10.004.
  99. Wei R., Zeng Q., Davies T., Yuan G., Wang K., Xue X., Yin Q., 2018. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Engineering Geology 233: 172–182. DOI 10.1016/j.enggeo.2017.12.013.
  100. Yibeltal M., Tsunekawa A., Haregeweyn N., Adgo E., Meshesha D.T., Aklog D., Masunaga T., Tsubo M., Billi P., Vanmaercke M., Ebabu K., Dessie M., Sultan D., Liyew M., 2019. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 179: 160–174. DOI 10.1016/j.catena.2019.04.013.
  101. Zhang X., Li X., Feng Y., Liu Z., 2015. The use of ROC and AUC in the validation of objective image fusion evaluation metrics. Signal Processing 115: 38–48. DOI 10.1016/j. sigpro.2015.03.007.