Socio-environmental vulnerability of water in the estuary of the metropolitan region of Santos (Brazil)

Main Article Content

Fernando L.C. Martins
Fabio Giordano
Walter Barrella

Abstract

Santos and São Vicente Estuarine Complex (SSEC) is a densely populated coastal area that houses the main port in Latin America and the most prominent Brazilian industrial complex. Irregular occupations in preservation areas result in a disorderly increase in population, with negative social and environmental impacts. We evaluated the average annual growth of 74 slums occurring in this area and variations in water quality from 2005 to 2018. We monitor the growth of the occupied areas and estimate their respective populations. The average annual population growth was over 6% per year (p.a.). Invasions of new areas and verticalisation of already occupied areas represent 85% of the growth seen. The monthly polluting loads exceeded 450 tonnes or 2,086,000 m3, compromising the waters and local and regional public health. We strongly recommend re-urbanising the area using the resource savings caused by water loss to reduce the risks of ecosystem degradation, damage to health and disease spread.

Downloads

Download data is not yet available.

Article Details

How to Cite
Martins, F. L., Giordano, F., & Barrella, W. (2021). Socio-environmental vulnerability of water in the estuary of the metropolitan region of Santos (Brazil). Quaestiones Geographicae, 40(4), 113-125. https://doi.org/10.2478/quageo-2021-0040
Section
Articles

References

  1. AGEM, 2015. Regional program for the identification and monitoring of disappointed housing areas – PRIMAHD. Online: http://www.agem.sp.gov.br 2005 (accessed: June 2019).
  2. Balk D., Montgomery M.R., McGranahan G., Kim D., Mara V., Todd M., Buettner T., Dorélien A., 2009. Mapping urban settlements and the risks of climate change in Africa, Asia and South America. In: Guzmán J.M., Martine G., McGranahan G., Schensul D., Tacoli C., (eds), Population dynamics and climate change. United Nations Population Fund (UNFPA), International Institute for Environment and Development (IIED). New York, London: 80-103.
  3. Batabyal P., Mookerjee S., Einsporn M.H., Lara R.J., Paleit A., 2016. Environmental drivers on seasonal abundance of riverine-estuarine V. cholerae in the Indian Sundarban mangrove. Ecological indicators 69: 59-65. DOI 10.1016/j. ecolind.2016.04.004.
  4. Berbel G.B., Favaro D.I., Braga E.S., 2015. Impact of harbor, industry and sewage on the phosphorus geochemistry of a subtropical estuary in Brazil. Marine Pollution Bulletin 93(1-2): 44-52. DOI 10.1016/j.marpolbul.2015.02.016.
  5. BRASIL. Resolução CONAMA 357, de 17 de março de 2005 Conselho Nacional de Meio Ambiente. Online: http://www.mma.gov.br/port/conama/res/res05/res35705.pdf (accessed: June 2018).
  6. Campuzano F.J., Mateus M.D., Leitão P.C., Leitão P.C., Marín V.H., Delgado L.E., Tironi A., Pierini J.O., Sampaio A.F.P., Almeida P., Neves R.J., 2013. Integrated coastal zone management in South America: A look at three contrasting systems. Ocean & Coastal Management 72: 22-35. DOI 10.1016/j.ocecoaman.2011.08.002.
  7. CEMADEN, 2017. Rainfall index of the state of São Paulo. Online: http://www.cemaden.gov.br (accessed: June 2019).
  8. CETESB, 2011. Quality report of the coastal beaches of the state of São Paulo. Online: http://cetesb.sp.gov.br (accessed: June 2019).
  9. CETESB, 2017. Quality report of the coastal beaches of the state of São Paulo. Online: http://cetesb.sp.gov.br (accessed: June 2019).
  10. Cutter S.L., Boruff B.J., Shirley W.L., 2003. Social vulnerability to environmental hazards. Social science quarterly 84(2), 242-261. DOI 10.1111/1540-6237.8402002.
  11. Fabiano C., Muniz S., 2010. Vila Gilda stilt: Paths to regularization. Online: http://www.ipea.gov.br/ppp/index.php/PPP/article/view/173 (accessed: June 2019).
  12. Fontanelle F.R., Tanigushi S., Silva J.S., Lourenço R.A., 2019. Environmental quality survey of an industrialized estuary and an Atlantic Forest Biosphere Reserve through a comparative appraisal of organic pollutants. Environmental Pollution 248: 339-348. DOI 10.1016/j.envpol.2019.02.023.
  13. Garcia Occhipinti A., 1986. A conceptual approach to ocean disposal. Water Science and Technology 18(11): 141-158. DOI 10.2166/wst.1986.0150.
  14. Gillam C., Charles A., 2019. Community wellbeing: The impacts of inequality, racism and environment on a Brazilian coastal slum. World Development Perspectives 13: 18-24. DOI 10.1016/j.wdp.2019.02.006.
  15. Harari J., França C.A.S., Marques J., 2007. Aplicações da modelagem numérica da Baía de Santos (SP, Brasil): correntes residuais e dispersão de poluentes. Encontro Internacional De Governança Da Água Na América Latina 1: 1-15.
  16. IBGE, 2010. Demographic census. Online: http://www.ibge.gov.br (accessed: June 2019).
  17. IBGE, 2018. Statistical projection. Online: http://www.ibge.gov.br (accessed: June 2019).
  18. Kron W., 2013. Coasts: The high-risk areas of the world. Natural Hazards 66: 1363-1382. DOI 10.1007/s11069-012-0215-4.
  19. Leridon H., 2020. World population outlook: Explosion or implosion? Population Societies 1: 1-4. DOI 10.3917/popsoc.573.0001.
  20. Moreira F.D.A., Rampazo N.A.M., Castellano M.S., 2017. Impacts of rainfall and vulnerabilities in the metropolitan region of Baixada Santista, Brazil. International Journal of Safety and Security Engineering 7(2): 169-179.
  21. Ndah A., Ngoran S.D., 2015. Liaising water resources consumption, urban sanitation and cholera epidemics in Douala, Cameroon: A community vulnerability assessment. Online: https://www.researchgate.net/profile/Suinyuy_Derrick_Ngoran/publication/288181541_Liaising_Water_Resources_Consumption_Urban_Sanitation_and_Cholera_Epidemics_in_Douala_Cameroon_A_Community_Vulnerability_Assessment/ links/567eca8f08aebccc4e05de9a.pdf (accessed: June 2019).
  22. Neumann B., Vafeidis A.T., Zimmermann J., Nicholls R.J., 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding A global assessment. PLOS One 10(3): e0118571. DOI 10.1371/journal. pone.0118571.
  23. Oliveira E.F.C., Silva J.A.F., Oliveira Júnior J.F., 2020. Critical analysis of the Brazilian environmental safety system. Revista Do Instituto Brasileiro De Segurança Pública (RIBSP) 3(7): 9-35. DOI 10.36776/ribsp.v3i7.87.
  24. Pereira C.D.S., Maranho L.A., Cortez F.S., Pusceddu F.H., Santos A.R., Ribeiro D.A., Cesar A., Guimarães L.L., 2016.
  25. Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. Science of the Total Environment 548: 148-154. DOI 10.1016/j.scitotenv.2016.01.051.
  26. RIPSA. International Health Information Network. Online: http://www.ripsa.org.br/fichasIDB/pdf/ficha_A.3.pdf. 2018 (accessed: June 2019).
  27. Sampaio A.F.P., 2011. Avaliação da correlação entre parâmetros de qualidade da água e socioeconômicos no Complexo Estuarino de Santos São Vicente, através de modelagem numérica ambiental. Dissertação de Mestrado, Ciência Ambiental, Universidade de São Paulo, São Paulo. DOI 10.11606/D.90.2011.tde-23112011-105215.
  28. São Paulo, 2010. Paulista vulnerability index. Online: http://indices-ilp.al.sp.gov.br (accessed: June 2019).
  29. Sarkar S.S., Saha S., Takada H., Bhattacharya A., Mishra P., Bhattacharya P., 2007. Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production 15(16): 1559-1567. DOI 10.1016/j.jclepro.2006.07.030.
  30. Shibata T., Wilson J.L., Watson L.M., Nikitina I.V., Ansariadi La Ane R., Maidin A., 2015. Life in a landfill slum, children’s health, and the millennium development goals. Science of the Total Environment 536: 408-418. DOI 10.1016/j.scitotenv.2015.05.137.
  31. Small C., Nicholls R.J., 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research 19: 584-599.
  32. SNIS, 2017. National sanitation information system. Online: http://www.snis.gov.br (accessed: June 2019).
  33. UN, 2012. The future we want – Ministry of environment. Online: http://www2.mma.gov.br/port/conama/processos/61AA3835/O-Futuro-que-queremos1.pdf (accessed: June 2019).
  34. UN, 2013. Sustainable development challenges. World Economic and Social Survey. Online: https://data.worldbank.org/share/widgetend=2014&indicators=EN. POP.SLUM.UR.ZS&start=2014&type=shaded&view=map” width=’450’ height=’300’ frameBorder=’0’ scrolling=”no” > (accessed: June 2019).
  35. UN-BR, 2018. Glossary of terms of the sustainable development objective. Online: http://www.br.undp.org/content/brazil/pt/home/library/ods/glossario-ods-11. html (accessed: June 2019).
  36. UN-HABITAT, 2018. Tracking progress towards inclusive, safe, resilient, and sustainable cities and human settlements. Online: https://unhabitat.org/sdg-11-synthesis-report/ (accessed: June 2019).
  37. Von Sperling M., 2014. Introduction to water quality and sewage treatment, Pampulha, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil. 2nd ed.
  38. WHO, 2017. Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. 1. Water supply – standards. 2. Sanitation – trends. 3. Drinking water – supply and distribution.
  39. Young A.F., Fusco W., 2006. Espaços de Vulnerabilidade Sócio-ambiental para a População 10. da Baixada Santista: identificação e análise das áreas críticas. XV Encontro Nacional de Estudos Populacionais-desafios e oportunidades do crescimento zero 15: 1-17. Online: https://www.research-gate.net/publication/274192751 (accessed: June 2019).