Characterisation and evaluation of columnar basalt geoheriatge in Thailand: Implication for geotourism management in post-quarring area
PDF

Keywords

geoheritage
geology
volcanic rock
olivine basalt
geochemistry
quarry

How to Cite

Singtuen, V., & Anumart, A. (2022). Characterisation and evaluation of columnar basalt geoheriatge in Thailand: Implication for geotourism management in post-quarring area. Quaestiones Geographicae, 41(1), 37–50. https://doi.org/10.2478/quageo-2022-0003

Abstract

Late Cenozoic basaltic rocks in Nang Rong Columnar Jointed Basalts in southern Khorat Plateau are among the greatest columnar basalts in Thailand as famous geoheritage sites. This work aims to characterize and evaluate the post-quarrying area by field investigation, petrography, geochemistry, and geological engineering. A petrographical study determines these basalts as olivine basalts, presenting porphyritic texture with olivine microphenocryst. Geochemical characteristics indicate these basalts were alkaline basalt generated from alkaline sodic magma series within the continental plates. In addition, columnar jointed basalt presents compressive strength and point load strength index higher than platy basalt with a higher percentage of alteration. Local authorities enhance people in the area to develop and promote their georesources through touristic activities. This geoheritage demonstrates high geology and tourism management values; thus, it could be the prototype of the post-quarrying geosite of Thailand.

https://doi.org/10.2478/quageo-2022-0003
PDF

References

ASTM [ASTM International], 2014. Standard test method for determination of rock hardness by Rebound Hammer Method, (ASTM D 5873).

Barr S.M., MacDonald A.S., 1981. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia: Summary. Geological Society of America Bulletin 92(1): 508-512.

Billings M.P., 1954. Structural geology. Prentice Hall, Englewood Cliffs, NJ.

Bohle M., Di Capua G., 2019. Setting the scene. In: Martin

B. (ed.), Exploring geoethics. Palgrave Pivot, Cham: 1-24. DOI: https://www.doi.org/10.1007/978-3-030-12010-8_1.

Bohle M., Di Capua G., Bilham N., 2019. Reframing geoethics? In: Martin B. (ed.), Exploring geoethics. Palgrave Pivot, Cham: 165-174. DOI: https://www.doi.org/10.1007/978-3-030-12010-8_5.

Careddu N., Grillo S.M., 2019. Sardinian Basaltan ancient georesource still en vogue. Geoheritage 11(1): 35-45. DOI: https://www.doi.org/10.1007/s12371-018-0285-0.

Comentale B., 2019. Disused stone quarries in urban landscape, a feature of geoheritage: case studies from Paris and Nantes. Physio-Geo 13: 1-24. DOI: https://www.doi.org/10.4000/physio-geo.7198.

Department of Primary Industries and Mines, 2009. Nationwide mining license information. Bureau of Mines and Concession, Department of Primary Industries and Mines, Bangkok.

Di Capua G., Peppoloni S. 2019. Defining geoethics. Website of the IAPG – International Association for Promoting Geoethics. Online: www.geoethics.org/definition (accessed 15 December 2021).

DMR [Department of Mineral Resources], 2001. Mineral statistics of Thailand (1994-2000). Technic and Planning Division, Department of Mineral Resources, Bangkok.

DMR [Department of Mineral Resources], 2007. Geologic Map of Buriram Province. Online: www.dmr.go.th/download/pdf/NorthEast/burirum.pdf (accessed 29 October 2020).

Fepuleai A., Nemeth K., 2019. Volcanic geoheritage of landslides and rockfalls on a tropical ocean Island (Western Samoa, SW Pacific). Geoheritage 11(2): 577-596. DOI: https://www.doi.org/10.1007/s12371-018-0306-z.

Hamada A., Toramaru A., 2020. Analogue experiments on morphological transition from colonnade to entablature of columnar joints. Journal of Volcanology and Geothermal Research 402: 106979. DOI: https://www.doi.org/10.1016/j.jvolgeores.2020.106979.

Hetenyi G., Taisne B., Garel F., Medard E., Bosshard S., Mattsson H.B., 2012. Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bulletin of Volcanology 74(2): 457-482. DOI: https://www.doi.org/10.1007/s00445-011-0534-4.

ISRM [International Society for Rock Mechanics and Rock Engineering], 1985. Commission on testing methods. Suggested method for determining Point Load Strength, Ankara: ISRM Turkish National Group. 22: 51-60.

Ji H., Zhang J.C., Xu W.Y., Wang R.B., Wang H.L., Yan L., Lin Z.N., 2017. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: Observations from laboratory-based physical modelling. Rock Mechanics and Rock Engineering 50(7): 1919-1931. DOI: https://www.doi.org/10.1007/s00603-017-1192-4.

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27: 745-750.

Li Y.Q., Liu J.Z., 2020. Late Cenozoic columnar-jointed basaltic lavas in eastern and southeastern China: morphologies, structures, and formation mechanisms. Bulletin of Volcanology 82(7): 58. DOI: https://www.doi.org/10.1007/s00445-020-01397-1.

Mallet R., 1875. On the origin and mechanism of production of the prismatic (or columnar) structure of basalt. American Journal of Science 3-9(51): 206-211.

Maria Mateos R., Duran J.J., Robledo P.A., 2011. Mares quarries on the Majorcan Coast (Spain) as geological heritage sites. Geoheritage 3(1): 41-54. DOI: https://www.doi.org/10.1007/s12371-010-0026-5.

Middlemost E.A.K., 1975. The basalt clan. Earth-Science Reviews 11: 337-364.

Migoń P., Pijet-Migoń E., 2016. Overlooked geomorphological component of volcanic geoheritage-diversity and perspectives for tourism industry, Pogrze Kaczawskie Region, SW Poland. Geoheritage 8(4): 333-350. DOI: https://www.doi.org/10.1007/s12371-015-0166-8.

Mullen E.D., 1983. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters 62: 53-62.

Nazaruddin D.A., 2019. Selected geosites for geoheritage, geotourism, and geoconservation in Songkhla Province, Southern Thailand. Quaestiones Geographicae 38(1): 161-177. DOI: https://www.doi.org/10.2478/quageo-2019-0011.

Nazaruddin D.A., 2020. Granite landforms of Samui Island (southern Thailand) from geoheritage, geoconservation and geotourism perspectives. International Journal of Geoheritage and Parks 8: 75-86. DOI: https://www.doi.org/10.1016/j.ijgeop.2020.05.003.

Nemeth K., Gravis I., Nemeth B., 2021. Dilemma of geoconservation of monogenetic volcanic sites under fast urbanization and infrastructure developments with special relevance to the Auckland volcanic field, New Zealand. Sustainability 13(12): 6549. DOI: https://www.doi.org/10.3390/su13126549.

Pearce J.A., Cann J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19: 290-300.

Prosser C.D., 2018. Geoconservation, quarrying and mining: Opportunities and challenges illustrated through working in partnership with the mineral extraction industry in England. Geoheritage 10(2): 259-270. DOI: https://www.doi.org/10.1007/s12371-016-0206-z.

Singtuen M., Won-In K., 2017. Geotourism and sustainable development perspectives of the Khao PhraWihan National Park on the southern edge of the Khorat Plateau, Thailand. In: Proceedings of the 8th International Conference on Environment, Agriculture, Biology and Natural Sciences (EABNS-2017). Bangkok: 39-45.

Singtuen V., Gałka E., Phajuy B., Won-in K., 2019. Evaluation and geopark perspective of the geoheritage resources in Chiang Mai Area, Northern Thailand. Geoheritage 11: 1955-1972. DOI: https://www.doi.org/10.1007/s12371-019-00410-0.

Singtuen V., Phajuy B., 2020. Archaeological distribution of geoheritage for geotourism development in Nakhon Sawan Province, Thailand. Quaestiones Geographicae 39(3): 57-68. DOI: https://www.doi.org/10.2478/quageo-2020-0023.

Singtuen V., Won-In K., 2018a. An assessment of the potential island for geotourism value in Ko Kham Undersea Park, Chonburi, Gulf of Thailand. In: Proceedings of the BRegional Geoheritage Conference 2018 with the theme BGeoheritages for People. Khonkaen: 11-18.

Singtuen V., Won-In K., 2018b. Geodiversity and geoconservation of the Chaiyaphum region in Thailand for sustainable geotourism planning. Geojournal of Tourism and Geosites 22: 548-560. DOI: https://www.doi.org/10.30892/gtg.22223-310.

Smith J.V., Holden L., 2020. Rock slope kinematic instability controlled by large-scale variation of basalt column orientation. Bulletin of Engineering Geology and the Environment 80(4): 239-250. DOI: https://www.doi.org/10.1007/s10064-020-01917-5.

Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Journal of the Geological Society 42: 313-345.

Tietz O., Buechner J., Lapp M., Scholle T., 2018. The Stolpen Volcano in the Lausitz Volcanic Field (East Germany) – volcanological, petrographic and geochemical investigations at the type locality of basalt. Journal of Geosciences 63(4): 299-315. DOI: https://www.doi.org/10.3190/jgeosci.275.

USGS, 2021. Mineral resources online spatial data, interactive maps and downloadable data for regional and global analysis. Online: mrdata.usgs.gov/ (accessed 15 December 2021).

Vasseur J., Wadsworth F.B., 2019. The permeability of columnar jointed lava. Journal of Geophysical Research-Solid Earth 124(11): 11305-11315. DOI: https://www.doi.org/10.1029/2019jb018118.

Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20: 325-343.

Xia Y., Zhang C., Zhou H., Zhang C., Hong W. 2019. Mechanical anisotropy and failure characteristics of columnar jointed rock masses (CJRM) in Baihetan hydropower station: Structural considerations based on digital image processing technology. Energies 12(19): 3602. DOI: https://www.doi.org/10.3390/en12193602.

Yan Q., Shi X., Metcalfe I., Liu S., Xu T., Kornkanitnan N., Sirichaiseth Th., Yuan L., Zhang Y., Zhang H., 2018. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Nature 8(1): 1-14. DOI: https://www.doi.org/10.1038/s41598-018-20712-7.

Yoder H.S., Tilley C.E., 1962. Origin of basalt magmas; an experimental study of natural and synthetic rock systems. Journal of Petrology 3(3): 342-529.