Analysis of the velocity changes of the Jakobshavn Glacier based on SAR imagery
PDF

Keywords

marine-terminating glacier
offset-tracking
SAR imagery
glacier surface velocity
temporal changes in dynamics

How to Cite

Łukosz, M., Hejmanowski, R., & Witkowski, W. T. (2022). Analysis of the velocity changes of the Jakobshavn Glacier based on SAR imagery. Quaestiones Geographicae, 41(1), 93–105. https://doi.org/10.2478/quageo-2022-0007

Abstract

The study analyzes the changes in dynamics of the Jakobshavn Glacier in summer and winter in 2017 and 2021. Satellite radar observations and the available database were used for this. Moreover, the influence of the time baseline between SAR images on the quality of the results was also investigated. The velocities computed from Sentinel-1 images and the offset-tracking technique were compared with the MEaSUREs database information. The results showed that Jakobshavn Glacier accelerated in 2021 up to 39.0 m d−1. However, this value may be underestimated due to the resolution of Sentinel-1 data. The results therefore confirm the acceleration of the glacier melting process, which may be a result of the observed climate changes on our planet.

https://doi.org/10.2478/quageo-2022-0007
PDF

Funding

We would like to thank the European Space Agency and the National Snow and Ice Data Center for providing us with access to radar im- ages, as well as velocity data from the MEaSUREs database.

References

Aschwanden A., Fahnestock M.A., Truffer M., Brinkerhoff D.J., Hock R., Khroulev C., Mottram R., Khan A.S., 2019. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Science Advances 5(6). DOI: https://www.doi.org/10.1126/SCIADV.AAV9396.

Cai J., Wang C., Mao X., Wang Q., 2017. An adaptive offset tracking method with SAR images for landslide displacement monitoring. Remote Sensing 9(8): 830.

Du W., Liu X., Guo J., Shen Y., Li W., Chang X., 2019. Analysis of the melting glaciers in Southeast Tibet by ALOS-PALSAR data. Terrestrial, Atmospheric and Oceanic Sciences 30: 7-19.

ESA. n.d. Sentinel-1 SAR technical guide. Online: https://sen- tinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/ground-range-detected (accessed 11 October 2021).

Fan J., Wang Q., Liu G., Zhang L., Guo Z., Tong L., Peng J., et al., 2019. Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas north slope glacier area. Remote Sensing 11(6): 625.

Fang L., Ye Z., Su S., Kang J., Tong X., 2020. Glacier surface motion estimation from SAR intensity images based on subpixel gradient correlation. Sensors 20(16): 4396.

Farness K., Jezek K.C., 2008. Velocity trends for Jakobshavn glacier, Greenland for the years 2000, 2004, 2005, and 2006 including procedure manuals. Byrd Polar Research Center, The Ohio State University. Online: https://kb.osu.edu/handle/1811/54467 (accessed 14 January 2022).

Friedl P., Weiser F., Fluhrer A., Braun M.H., 2020. Remote sensing of glacier and ice sheet grounding lines: A review. Earth-Science Reviews 201: 102948.

Gatti R.C., Dudko A., Lim A., Velichevskaya A.I., Lushchaeva I.V., Pivovarova A.V., Ventura S., Lumini E., Berruti A., Volkov I.V., 2018. The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution 8(15): 7401-7420.

Golledge N.R., 2020. Long-term projections of sea-level rise from ice sheets. Wiley Interdisciplinary Reviews: Climate Change 11(2): e634.

Golledge N.R., Keller E.D., Gomez N., Naughten K.A., Bernales J., Trusel L.D., Edwards T.L., 2019. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566(7742): 65-72.

Gomez R., Arigony-Neto J., De Santis A., Vijay S., Jaña R., Rivera A., 2019. Ice dynamics of union glacier from SAR offset tracking. Global and Planetary Change 174: 1-15.

Guo W., Liu S., Wei J., Bao W., 2013. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Annals of Glaciology 54(63): 299-310.

Hanssen R., 2001. Radar interferometry - Data interpretation and error analysis, 1st edn., Vol. 2. Springer Netherlands, Dordrecht. DOI: https://www.doi.org/10.1007/0-306-47633-9.

Holland D.M., Thomas R.H., De Young B., Ribergaard M.H., Lyberth B., 2008. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience 1(10): 659-664.

Huang J., Bai Y., Lei S., Deng K., 2020. Time-series SBAS pixel offset tracking method for monitoring three-dimensional deformation in a mining area. IEEE Access 8: 118787- 118798.

Huang J., Deng K., Fan H., Yan S., 2016. An improved pixel-tracking method for monitoring mining subsidence. Remote Sensing Letters 7(8): 731-740. DOI: https://www.doi.org/10.1080/2150704X.2016.1183177.

Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A., 2021. Accelerated global glacier mass loss in the early twenty-first century. Nature 592(7856): 726-731.

Joughin I., Abdalati W., Fahnestock M., 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432(7017): 608-610.

Joughin I., Shean D.E., Smith B.E., Floricioiu D., 2020. A decade of variability on Jakobshavn Isbræ: Ocean temperatures pace speed through influence on mélange rigidity. Cryosphere 14(1): 211-227.

Joughin I., Howat I.M., Fahnestock M., Smith B., Krabill W., Alley R.B., Stern H., Truffer M., 2008. Continued evolution of Jakobshavn Isbrae following its rapid speedup. Journal of Geophysical Research: Earth Surface 113(F4): 4006.

Joughin I., Smith B.E., Howat I.M., Scambos T., Moon T., 2010. Greenland flow variability from ice-sheet-wide velocity mapping. Journal of Glaciology 56(197): 415-430.

Joughin I., Smith B.E., Shean D.E., Floricioiu D., 2014. Brief communication: Further summer speedup of Jakobshavn Isbræ. Cryosphere 8(1): 209-214.

Joughin I, Howat I.M., Smith B., Scambos T., 2021. MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR, Version 4. [Jakobshavn Glacier]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI: https://www.doi.org/10.5067/GQZQY2M5507Z.

Kääb A., Winsvold S.H., Altena B., Nuth C., Nagler T., Wuite J., 2016. Glacier remote sensing using Sentinel-2. Part I: Radiometric and geometric performance, and application to ice velocity. Remote Sensing 8(7): 598. DOI: https://www.doi.org/10.3390/rs8070598.

Khazendar A., Fenty I.G., Carroll D., Gardner A., Lee C.M., Fukumori I., Wang O., Zhang H., Seroussi H., Moller D., Noël B.P.Y., van der Broeke M.R., Dinardo S., Willis J., 2019. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience 12(4): 277-283.

King M.D., Howat I.M., Candela S.G., Noh M.J., Jeong S., Noël B.P.Y., van den Broeke M.R., Wouters B., Negrete A., 2020. Dynamic ice loss from the Greenland ice sheet driven by sustained glacier retreat. Communications Earth & Environment 1(1): DOI: https://www.doi.org/10.1038/s43247-020-0001-s.

Lee J.S., Pottier E., 2009. Polarimetric radar imaging: From basics to applications. CRC Press. DOI: https://www.doi.org/10.1201/9781420054989.

Lei Y., Gardner A., Agram P., 2021. Autonomous repeat image feature tracking (autoRIFT) and its application for tracking ice displacement. Remote Sensing 13(4): 1-20.

Lemos A., Shepherd A., McMillan M., Hogg A.E., 2018a. Seasonal variations in the flow of land-terminating glaciers in central-west Greenland using sentinel-1 imagery. Remote Sensing 10(12): 1878.

Lemos A., Shepherd A., McMillan M., Hogg A.E., Hatton E., Joughin I., 2018b. Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015-2017, from Sentinel 1-a/b SAR imagery. Cryosphere 12(6): 2087-2097.

Luckman A., Murray T., 2005. Seasonal variation in velocity before retreat of Jakobshavn Isbræ, Greenland. Geophysical Research Letters, 32(8): 1-4.

Mahmoud A.M.A., Novellino A., Hussain E., Marsh S., Psimoulis P., Smith M., 2020. The use of SAR offset tracking for detecting sand dune movement in Sudan. Remote Sensing 12(20): 3410.

Massonnet D., Feigl K.L., 1998. Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics 36(4): 441-500.

Mottram R., Stendel M., Box J., Mankoff K., Ahlstrøm A., 2021. What happened to Greenland’s ice sheet in 2021? World Economic Forum, 1 December. Online: https://www.we-forum.org/agenda/2021/12/greenland-ice-sheet-environment-climate-change/ (accessed 31 January 2022).

Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P., 2015. The sentinel-1 mission: New opportunities for ice sheet observations. Remote Sensing 7(7): 9371-9389.

Neckel N., Zeising O., Steinhage D., Helm V., Humbert A., 2020. Seasonal observations at 79°N glacier (Greenland) from remote sensing and in situ measurements. Frontiers in Earth Science 8: 142.

Riel B., Minchew B., Joughin I., 2021. Observing traveling waves in glaciers with remote sensing: New flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ. Greenland. Cryosphere 15(1): 407-429.

Rignot E., Mouginot J., Morlighem M., Seroussi H., Scheuchl B., 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters 41(10): 3502-3509.

Samsonov S., Tiampo K., Cassotto R., 2021. SAR-derived flow velocity and its link to glacier surface elevation change and mass balance. Remote Sensing of Environment, 258: 112343.

Schubert A., Faes A., Kääb A., Meier E., 2013. Glacier surface velocity estimation using repeat TerraSAR-X images: Waveletvs. correlation-based image matching. ISPRS Journal of Photogrammetry and Remote Sensing 82: 49-62.

Sohn H.-G., Jezek K.C., van der Veen C.J., 1998. Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations. Geophysical Research Letters 25(14): 2699-2702.

Strozzi T., Luckman A., Murray T., Wegmüller U., Werner C.L. 2002. Glacier motion estimation using SAR offset-tracking procedures. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391.

Strozzi T., Paul F., Wiesmann A., Schellenberger T., Kääb A., 2017. Circum-arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing 9(9): 947.

Sun L., Muller J.-P., Chen J., 2017. Time series analysis of very slow landslides in the three gorges region through small baseline SAR offset tracking. Remote Sensing 9(12): 1314.

Torres R., Snoeij P., Geudtner D., Bibby D., Davidson M., Attema E., Potin P., Rommen B., Floury N., Brown M., Traver I.N., Deghaye P., Duesmann B., Rosich B., Miranda N., Bruno C., L’Abbate M., Croci R., Pietropaolo A.,Huchler M., Rostan F., 2012. GMES Sentinel-1 mission. Remote Sensing of Environment 120: 9-24.

Trouvé E., Vasile G., Gay M., Grussenmeyer P., Nicolas J.M., Landes T., Koehl M., Chanussot J., Julea A., 2005. Combining optical and SAR data to monitor temperate glaciers. International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 4, pp. 2637-2640.

Tuckett P.A., Ely J.C., Sole A.J., Livingstone S.J., Davison B.J., Melchior van Wessem J., Howard J., 2019. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nature Communications 10(1): 1-8.

Vizcaino M., Mikolajewicz U., Ziemen F., Rodehacke C.B., Greve R., Van Den Broeke, M.R., 2015. Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300. Geophysical Research Letters 42(10): 3927-3935.

Willis J., Carroll D., Gardner A., Khazendar A., Wood M., Holland D., 2020. Glacier forecast: Jakobshavn Isbrae primed for thinning and acceleration. Preprint, ResearchSquare, pp. 1-23.

Winsvold S.H., Kääb A., Nuth C., Andreassen L.M., Van Pelt W.J.J., Schellenberger, T., 2018. Using SAR satellite data time series for regional glacier mapping. The Cryosphere 12: 867-890.

Wu Z., Zhang W.H., Liu Y.S., Ren D., Xun J.Z., Bai J.X., 2020. Analysis of the response of glaciers to climate change based on the glacial dynamics model. Environmental Earth Sciences 79(19): 1-10.

Xu X., Ma C., Lian D., Zhao D., 2020. Inversion and analysis of mining subsidence by integrating DInSAR, offset tracking, and PIM technology. Journal of Sensors 2020(8): 1-15. DOI: https://www.doi.org/10.1155/2020/4136837.

Yan S., Guo H., Liu G., Fu W., 2013. Monitoring Muztagh Kuksai glacier surface velocity with L-band SAR data in southwestern Xinjiang, China. Environmental Earth Sciences 70(7): 3175-3184.

Zhao G., Wang L., Deng K., Wang M., Xu Y., Zheng M., Luo Q., 2021. An adaptive offset-tracking method based on deformation gradients and image noises for mining deformation monitoring. Remote Sensing 13(15): 2958.

Zhou J., Li Z., Guo W., 2014. Estimation and analysis of the surface velocity field of mountain glaciers in Muztag Ata using satellite SAR data. Environmental Earth Sciences 71(8): 3581-3592.