Hydrological dry periods versus atmospheric circulations in the lower Vistula Basin (Poland) in 1954–2018
PDF

Keywords

dry periods
atmospheric circulation
Box-Cox transformations
Standardised Streamflow Index (SSI)
Poland

How to Cite

Bartczak, A., Araźny, A., Krzemiński, M., & Maszewski, R. (2022). Hydrological dry periods versus atmospheric circulations in the lower Vistula Basin (Poland) in 1954–2018. Quaestiones Geographicae, 41(1), 107–125. https://doi.org/10.2478/quageo-2022-0008

Abstract

The paper discusses the impact of atmospheric circulation on the occurrence of droughts. The research includes mean monthly discharges for 7 rivers in 1954-2018. Dry periods were determined with Standardised Streamflow Indices (SSI-12). Additionally, the circulation type calendar for Central Poland was used to determine the atmospheric circulation indices: western zonal (W), southern meridional (S) and cyclonicity (C). The analyses indicated a variation in the duration and intensity of droughts in the rivers. 2014-2017 was the driest period with the lowest SSI-12 for most rivers and the highest number of extremely dry months. The advection of air from the West and the South prevailed and anticyclonic synoptic situations dominated over the cyclonic types. Drought spells occurred at a dominance of anticyclonic circulation, with the inflow of air from the North and with increased western zonal circulation.

https://doi.org/10.2478/quageo-2022-0008
PDF

Funding

The authors thank the Institute of Meteorology and Water Management – National Research Institute for kindly providing the Polish meteorological data. The research work of Andrzej Araźny was supported by funds from the Nicolaus Copernicus University (1665/2020/ IDUB.EF – Global environmental changes).

References

Araźny A., 2019. Temporal and spatial variability of thermal and humidity stimuli in the Hornsund area (Svalbard). Polish Polar Research 40(1): 29-53. DOI: https://www.doi.org/10.24425/ppr.2019.126346.

Araźny A., Bartczak A., Maszewski R., Krzemiński M., 2021. The influence of atmospheric circulation on the occurrence of dry and wet periods in Central Poland in 1954- 2018. Theoretical and Applied Climatology 146: 1079-1095. DOI: https://www.doi.org/10.1007/s00704-021-03780-0.

Araźny A., Przybylak R., Wyszyński P., Wawrzyniak T., Nawrot A., Budzik T., 2018. Spatial variations in air temperature and humidity over Hornsund fjord (Spitsbergen) from 1 July 2014 to 30 June 2015. Geografiska Annaler: Series A, Physical Geography 100(1): 27-43. DOI: https://www.doi.org/10.1080/04353676.2017.1368832.

Bąk B., Maszewski R., 2012. Types of atmospheric circulation in the Region Bydgoszcz-Toruń during long-time meteorological drought in the years 1989-1998. Water-Environment-Rural Areas 12(4): 17-29.

Bárdossy A., Caspary H.J., 1990. Detection of climate change in Europe by analyzing European atmospheric circulation patterns from 1881 to 1989. Theoretical and Applied Climatology 42: 155-167.

Bartczak A., 2007. Long-term variability of the river outflow from the Zgłowiączka basin. Prace Geograficzne IGiPZ PAN 209.

Bartczak A., Glazik R., Tyszkowski S., 2014a. Time and space diversity of the specific discharge in the Zgłowiączka river basin (Eastern part of Kujawy). Nauka Przyroda Technologie 8(3): #28.

Bartczak A., Glazik R., Tyszkowski S., 2014b. The application of Box-Cox transformation to determine the Standardised Precipitation Index (SPI), the Standardised Discharge Index (SDI) and to identify drought events: Case study to Eastern Kujawy (Central Poland). Journal of Water and Land Development 22: 3-15. DOI: https://www.doi.org/10.2478/jwld-2014-0017.

Bartczak A., Glazik R., Tyszkowski, S., 2013. Trends of annual precipitation sums for Eastern Kujawy. Nauka Przyroda Technologie 7(1): #8.

Bartoszek K., 2014. The occurrence of atmpspheric drought events in Lublin area and their circulation conditioning. Annales Universitatis Mariae Curie-Skłodowska, Sectio E: Agricultura 69(4): 49-61.

Bartoszek K., 2017. The main characteristics of atmospheric circulation over East-Central Europe from 1871 to 2010. Meteorology and Atmospheric Physics 129: 113-129. DOI: https://www.doi.org/10.1007/s00703-016-0455-z.

Bobiński E., Meyer W., 1992a. Hydrological drought in Poland in 1989-1992 against 1982-1992. Gospodarka Wodna 12: 267-272.

Bobiński E., Meyer W., 1992b. Drought in Poland in the years 1982-1992. Hydrological determination. Reports of Institute of Meteorology and Water Management XV (4): 3-24.

Bonk A., Müller D., Ramisch A., Kramkowski M.A., Noryśkiewicz A.M., Sekudewicz I., Gąsiorowski M., Luberda-Durnaś K., Słowiński M., Schwab M., Tjallingii R., Brauer A., Błaszkiewicz M., 2021. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quaternary Science Reviews 251: 106715. DOI: https://www.doi.org/10.1016/j.quascirev.2020.106715.

Box G.E.P., Cox D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B 26(2): 211- 252.

Box G.E.P., Cox D.R., 1982. An analysis of transformations Revisited. Rebutted. Journal of the Royal Statistical Association 77(377): 209-210.

Brázdil R., Demarée G.R., Kiss A., Dobrovolný P., Chromá K., Trnka M., Dolák L., Rezníčková L., Zahradníček P., Limanowka D., Jourdain S., 2019. The extreme drought of 1842 in Europe as described by both documentary data and instrumental measurements. Climate of the Past 15: 1861-1884. DOI: https://www.doi.org/10.5194/cp-15-1861-2019.

Brykała D., 2009. Spatial and time differentiation of river discharge within Skrwa Lewa river basin. Prace Geograficzne IGIPZ PAN 221.

Büntgen U., Kyncl T., Ginzler C., Jacks D.S., Esper J., Tegel W., Heussner K.U., Kyncl J., 2013. Filling the Eastern European gap in millennium-long temperature reconstructions. Proceedings of the National Academy of Sciences of the United States of America 110(5): 1773-1778. DOI: https://www.doi.org/10.1073/pnas.1211485110.

Climate of Poland, 2020. Online: https://www.imgw.pl/sites/default/files/2021-04/imgw-pib-klimat-pol-ski-2020-opracowanie-final-eng-rozkladowki-min.pdf (accessed 4 September 2021).

Cook E.R., Seager R., Kushnir Y., Briffa K.R., Büntgen U., Frank D., Krusic P.J., Tegel W., van der Schrier G., Andreu-Heyles L., Bailie M., Baittinger C., Bleicher N., Bonde N., Brown D., Carrer M., Cooper R., Čufar K., Dittmar C., Esper J., Griggs C., Gunnarson B., Günther B., Gutierrez E., Haneca K., Helama S., Herzig F., Heussner K.U., Hofmann J., Janda P., Kontic R., Köse N., Kyncl T., Levanič T., Linderholm H., Manning S., Melvin T. M., Miles D., Neuwirth B., Nicolussi K., Nola P., Panayotov M., Popa I., Rothe A., Seftigen K., Seim A., Svarva H., Svoboda M., Thun T., Timonen M., Touchan R., Trotsiuk V., Trouet V., Walder F., Ważny T., Wilson R., Zang C., 2015. Old World megadroughts and pluvials during the Common Era. Science Advances 1(10): e1500561. DOI: https://www.doi.org/10.1126/sciadv.1500561.

Corti S., Molteni F., Palmer T.N., 1999. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398: 799-802.

Crowley T.J., 2000. Causes of climate change over the past 1000 years. Science 289: 270-277. DOI: https://www.doi.org/10.1126/science.289.5477.270.

Degirmendžić J., Kożuchowski K., 2018. Circulation epochs based on the Vangengeim-Girs large scale patterns (1891-2010). Acta Universitatis Lodziensis. Folia Geographica Physica 17: 7-13. DOI: https://www.doi.org/10.18778/1427-9711.17.01.

Doroszewski A., Jóźwicki T., Wróblewska E., Kozyra J., 2014. Agricultural drought in Poland in 1961-2010. Institute of Soil Science and Plant Cultivation, Puławy.

Garcia-Herrera R., Garrido-Perez J.M., Barriopedro D., Ordoñez C., Vicente-Serrano S., Nieto R., Gimeno L., Sori R., Yiou P., 2019. The European 2016/17 drought. Journal of Climate 32: 3169-3187. DOI: https://www.doi.org/10.1175/JCLI-D-18-0331.1.

Gautier D., Denis D., Locatelli, B., 2016. Impacts of drought and responses of rural populations in West Africa: A systematic review. Wiley Interdisciplinary Reviews: Climate Change 7(5): 666-681. DOI: https://www.doi.org/10.1002/wcc.411.

Gierszewski P., 2000. Characteristics of hydro-chemical environment of surface waters in the western part of the Płock Basin. Prace Geograficzne IGiPZ PAN 176.

Gutry-Korycka M., Sadurski A., Kundzewicz Z.W., Pociask-Karteczka J., Skrzypczyk L., 2014. Water resources and their use. Nauka 1: 77-98.

Guttman N.B., 1999. Accepting the standardized precipitation index: A calculation algoritm. Journal of the American Water Resources Association 35(2): 311-322. DOI: https://www.doi.org/10.1111/j.1752-1688.1999.tb03592.x.

Haigh J.D., 2007. The Sun and the earth’s climate. Living Reviews in Solar Physics 4(2): 64. Online: http://www.livin-greviews.org/lrsp-2007-2.

Haigh J., 2011. Solar influences on climate. Grantham Institute for Climate Change. Grantham Institute for Climate Change Briefing paper No. 5.

Haigh J.D., Cargill P., 2015. The Sun’s influence on climate. Princeton Primers in Climate, Princeton University Press.

Hannaford J., Lloyd-Hughes B., Keef C., Parry S., Prudhomme C., 2011. Examining the large-scale spatial coherence of European drought using regional indicators of precipitation and streamflow deficit. Hydrological Processes 25: 1146-1162. DOI: https://www.doi.org/10.1002/hyp.7725.

Hegerl G.C., Brönnimann S., Cowan T., Friedman A.R., Hawkins E., Iles C., Müller W., Schurer A., Undorf S., 2019. Causes of climate change over the historical record. Environmental Research Letters 14: 123006. DOI: https://www.doi.org/10.1088/1748-9326/ab4557.

Hejduk L., Kaznowska E., Wasilewicz M., Hejduk A., 2021. Hydrological droughts in the Białowieża Primeval Forest, Poland, in the years 1951-2020. Forests 12: 1744. DOI: https://www.doi.org/10.3390/f12121744.

Hellwig Z., 1967. A model of statistical prediction by means of the method of harmonical weights. Przegląd Statystyczny 14(2): 133-153.

Hirsch R.M., Slack J.R., Smith R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18(1): 107-121. DOI: https://www.doi.org/10.1029/WR018i001p00107.

Hoyt D.V., Schatten K.H., 1997. The role of the Sun in climate change. Oxford University Press. Hydrographic Atlas of Poland, 2005. H. Czarnecka (eds.), IMGW, Warszawa.

Ionita M., Tallaksen L.M., Kingston D.G., Stagge J.H., Laaha G., Van Lanen H.A., Scholz P., Chelcea S.M., Haslinger K., 2017. The European 2015 drought from a climatological perspective. Hydrology and Earth System Sciences 21: 1397-1419. DOI: https://www.doi.org/10.5194/hess-21-1397-2017.

IPCC 2013. Climate Change 2013: The Physical Science Basis. In Stocker T.F., Qin D., Plattner G.K., et al. (eds), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 1535.

IPCC 2018. Summary for Policymakers, 2018. In: Masson-Delmotte V., Zhai P., Pörtner H.O., et al. (eds), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 32 pp.

Isaksen K., Nordli Ø., Førland E.J., Łupikasza E., Eastwood S., Niedźwiedź T., 2016. Recent warming on Spitsbergen Influence of atmospheric circulation and sea ice cover. Journal of Geophysical Research: Atmospheres 121(20): 11- 913. DOI: https://www.doi.org/10.1002/2016JD025606.

Jacobeit J., Jönsson P., Bärring L., Beck C., Ekström M., 2001. Zonal indices for Europe 1780-1995 and running correlations with temperature. Climatic Change 48: 219-241.

Ji F., Wu Z., Huang J., Chassignet E.P., 2014. Evolution of land surface air temperature trend. Nature Climate Change 4:462-466. DOI: https://www.doi.org/10.1038/nclimate2223.

Jokiel P., 2004. Water resources in Central Poland on the verge XXI century. Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Karamuz E., Bogdanowicz E., Senbeta T.B., Napiórkowski J.J., Romanowicz R.J., 2021. Is it a drought or only a fluctuation in precipitation patterns? Drought Reconnaissance in Poland. Water 13: 807. DOI: https://www.doi.org/10.3390/w13060807.

Kasprzyk A., 2005. The role physico-georaphical factors in the development of hydrological droughts in Central Europe. In: Bogdanowicz E., Kossowska-Cezak U., Szkutnicki J. (eds), Ekstremalne zjawiska hydrologiczne i meteorologiczne. Seria: Monografie IMGW. PTG. IMGW. Warszawa: 277-285.

Kaznowska E., Hejduk A., Kempiński C. 2018. The Vistula River low flows in Warsaw in the 21st century. Acta Scientiarum Polonorum. Formatio Circumiectus 17(1): 29-38. DOI: https://www.doi.org/10.15576/ASP.FC/2018.17.1.29.

Kędziora A., Kępińska-Kasprzak M., Kowalczak P., Kundzewicz Z.W., Miler A.T., Pierzgalski E., Tokarczyk T., 2014. Risks resulting from water shortages. Nauka 1: 149-172.

Kejna M., Rudzki M., 2021. Spatial diversity of air temperature changes in Poland in 1961-2018. Theoretical and Applied Climatology 143: 1361-1379. DOI: https://www.doi.org/10.1007/s00704-020-03487-8.

Kiss A., Wilson R., Bariska, I., 2010. An experimental 392year documentary-based multi proxy (vine and grain) reconstruction of May-July temperatures for Koszeg, West-Hungary. International Journal of Biometeorology 55(4): 595-611. DOI: https://www.doi.org/10.1007/s00484-010-0367-4.

Kononova N.K., Lupo A.R., 2020. Changes in the dynamics of the Northern Hemisphere atmospheric circulation and the relationship to surface temperature in the 20th and 21st centuries. Atmosphere 11(3): 255. DOI: https://www.doi.org/10.3390/atmos11030255.

Kożuchowski K.M., 1993. Variations in hemispheric zonal index since 1899 and its relationship with air temperature. International Journal of Climatology 13: 853-864. DOI: https://www.doi.org/10.1002/joc.3370130804.

Kundzewicz Z.W., 2011. Climate changes, their reasons and effects – observations and projections. Landform Analysis 15: 39-49.

Kutiel H., Maheras P., Guika S., 1996. Circulation indices over the Mediterranean and Europe and their relationship with rainfall conditions across the Mediterranean. Theoretical and Applied Climatology 54(3): 125-138.

Laaha G., Gauster T., Tallaksen L.M., Vidal J.-P., Stahl K.,

Prudhomme C., Heudorfer B., Vlnas R., Ionita M., Van Lanen H.A.J., Adler M.-J., Caillouet L., Delus C., Fendekova M., Gailliez S., Hannaford J., Kingston D., Van Loon A.F., Mediero L., Osuch M., Romanowicz R., Sauquet E., Stagge J.H., Wong W.K., 2017. The European 2015 drought from a hydrological perspective. Hydrology and Earth System Sciences 21: 3001-3024. DOI: https://www.doi.org/10.5194/hess-21-3001-2017.

Łabędzki L., 2004. Drought problems in Poland. Water-Environment-Rural Areas 4(10): 47-66.

Łabędzki L., 2006a. Agricultural droughts. An outline of problems and methods of monitoring and classification. Water-Environment-Rural Areas. Treatises and Monographs. 17. IMUZ. Falenty.

Łabędzki L., 2006b. Droughts and floods – threat to agriculture. In: Mioduszewski W. (eds.), Water in agricultural landscape. Water-Environment Rural Areas. Treatises and Monographs. 18. IMUZ. Falenty: 29-43.

Łabędzki L., Bąk B., 2015. Drought in Poland in 2015 and an assessment of impacts in permanent grassland. Wiadomości Melioracyjne i Łąkarskie 3: 102-106.

Łabędzki L., Bąk B., Kanecka-Geszke E., Kasperska-Wołowicz W., Smarzyńska K., 2008. Relationship between meteorological and agricultural drought in different agroclimatic regions in Poland. Water-Environment-Rural Areas. Treatises and Monographs. 25. IMUZ. Falenty.

Lhotka O., Trnka M., Kyselý J., Markonis Y., Balek J., Možný M., 2020. Atmospheric circulation as afactor contributing to increasing drought severity in central Europe. Journal of Geophysical Research: Atmospheres 125: e2019JD032269. DOI: https://www.doi.org/10.1029/2019JD032269.

Limanówka D., Biernacik D., Czernecki B., Farat R., Filipiak J., Kasprowicz T., Pyrc R., Urban G., Wójcik R., 2012. Climate change and changeability since the mid-20th century. In: Wibig J. Jakusik E. (ed.), Warunki klimatyczne i oceanograficzne w Polsce i na Bałtyku Południowym. Spodziewane zmiany i wytyczne do opracowania strategii adaptacyjnych w gospodarce krajowej. Seria: Monografie IMGW-PIP. IMiGW – PIB. Warszawa.

Linderholm H.W., Folland C.K., Walther, A., 2009. A multicentury perspective of the summer North Atlantic Oscillation (SNAO) and drought in the eastern Atlantic Region. Journal of Quaternary Sciences 24: 415-425. DOI: https://www.doi.org/10.1002/jqs.1261.

López-Moreno J.I., Vicente-Serrano S.M., 2008. Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: A multitemporalscale approach. Journal of Climate 21: 1220-1243. DOI: https://www.doi.org/10.1175/2007JCLI1739.1.

Łupikasza E., Niedźwiedź, T., 2019. The influence of mesoscale atmospheric circulation on Spitsbergen air temperature in periods of Arctic warming and cooling. Journal of Geophysical Research: Atmospheres 124: 5233-5250. DOI: https://www.doi.org/10.1029/2018JD029443.

Mager P., Kuźnicka M., Kępińska-Kasprzak M., Farat R., 1999. Changes in drought intensity and frequency in Poland (1891-1995). Zmiany i zmienność klimatu Polski, Materiały Ogólnopolskiej Konferencji Naukowej. Łódź. 4-6 listopada 1999: 159-164.

Marks L., 2016. Climate change in the Holocene. Przegląd Geologiczny 64(1): 59-65.

McKee T.B., Doesken N.J., Kleist J., 1993. The relationship of drought frequency and duration to time scale. In: Proceedings Eight Conference on Applied Climatology. 1993. Anheim. California: 179-184.

Meyer W., 1984. Hydrological drought in Poland in 1982- 1984. Gospodarka Wodna 12: 357-360.

Molewski P., Weckwerth P., 2017. Land relief and its genesis. In: Radzimiński A. (ed.), Dzieje regionu kujawsko-pomorskiego, Toruń: 56-67.

Moravec V., Markonis Y., Rakovec O., Svoboda M., Trnka M., Kumar R., Hanel M., 2021. Europe under multi-year droughts: How severe was the 2014-2018 drought period? Environmental Research Letters 16: 034062. DOI: https://www.doi.org/10.1088/1748-9326/abe828.

Niedźwiedź T., 1981. Synoptic situations and their Impact on spatial variation of selected climate elements in the Upper Vistula Basin. Rozprawy habilitacyjne 58,Uniwersytet Jagielloński, Kraków.

Niedźwiedź T., 2000. Variability of the atmospheric circulation above the central Europe in the light of selected indices. Prace Geograficzne Instytutu Geografii UJ 107, Kraków: 379-389.

Niedźwiedź T., 2001. Circulation changeability over Spitsbergen in the second half of the 20th century. Problemy Klimatologii Polarnej 11: 7-26.

Niedźwiedź T., 2013. The atmospheric circulation. In: Marsz A.A., Styszyńska A. (ed.), Climate and Climate Change at Hornsund, Svalbard. Gdynia Maritime University, Gdynia: 57-74.

Niedźwiedź T., Twardosz R., Walanus, A., 2009. Long-term variability of precipitation series in east central Europe in relation to circulation patterns. Theoretical and Applied Climatology 98(3-4): 337-350. DOI: https://www.doi.org/10.1007/s00704-009-0122-0.

Okoniewska M., Szumińska, D., 2020. Changes in potential evaporation in the years 1952-2018 in North-Western Poland in terms of the impact of climatic changes on hydrological and hydrochemical conditions. Water 12: 877. DOI: https://www.doi.org/10.3390/w12030877.

Orth R., Zscheischler J., Seneviratne, S.I., 2016. Record dry summer in 2015 challenges precipitation projections in Central Europe. Scientific Reports 6: 28334. DOI: https://www.doi.org/10.1038/srep28334.

Parry S., Hannaford J., Lloyd-Hughes B., Prudhomme C., 2012. Multi-year droughts in Europe: Analysis of development and causes. Hydrology Research 43: 689-706. DOI: https://www.doi.org/10.2166/nh.2012.024.

Pena-Gallardo M., Vicente-Serrano S.M., Domínguez-Castro F., Beguería S., 2019. The impact of drought on the productivity of two rainfed crops in Spain. Natural Hazards and Earth System Sciences 19: 1215-1234. DOI: https://www.doi.org/10.5194/nhess-19-1215-2019.

Pińskwar I., Choryński A., Graczyk D., Kundzewicz Z.W., 2019. Observed changes in precipitation totals in Poland. Geografie 124(3): 237-264. DOI: https://www.doi.org/10.37040/geo-grafie2019124030237.

Pociask-Karteczka J., 2006. River hydrology and the North Atlantic Oscillation: A general review. AMBIO 35: 312- 314.

Pritzkow C., Wazny T., Heußner K.U., Słowiński M., Bieber A., Dorado-Liñán I., Helle G., Heinrich I., 2016. Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 449: 520-530. DOI: https://www.doi.org/10.1016/j.palaeo.2016.02.046.

Przybylak R., Maszewski, R., 2009. Atmospheric circulation changeabiity in Bydgoszcz-Toruń area. Acta Agrophysica 14(2): 427-447.

Przybylak R., Oliński P., Koprowski M., Filipiak J., Pospieszyńska A., Chorążyczewski W., Puchałka R., Dąbrowski H.P., 2020. Droughts in the area of Poland in recent centuries in the light of multi-proxy data. Climate of the Past 16: 627-661. DOI: https://www.doi.org/10.5194/cp-16-627-2020.

Przybylak R., Vizi Z., Araźny A., Kejna M., Maszewski R., Uscka-Kowalkowska J., 2007. Poland’s climate extremes index 1951-2005. Geographia Polonica 80: 47-58.

Ray R.L., Fares A., Risch E., 2018. Effects of drought on crop production and cropping areas in Texas. Agricultural and Environmental Letters 3: 170037. DOI: https://www.doi.org/10.2134/ael2017.11.0037.

Schubert S.D., Steward R.E., Wang H., Barlow M., Berbery E.H., Cai W., Hoerling M.P., Kanikicharla K.K., Koster R.D., Lyon B., Mariotti A., Mechoso C.R., Müller O.V., Rodriguez-Fonseca B., Seager R., Seneviratne S.I., Zhang L., Zhou T., 2016. Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate 29: 3989- 4019. DOI: https://www.doi.org/10.1175/JCLI-D-15-0452.1.

Sidorenkov N.S., Orlov, I.A., 2008. Atmospheric circulation epochs and climate changes. Russian Meteorology and Hydrology 33(9): 553-559.

Słowiński M., Marcisz K., Płóciennik M., Obremska M., Pawłowski D., Okupny D., Słowińska S., Borówka R., Kittel P., Forysiak J., Michczyńska D.J., Lamentowicz M., 2016. Drought as a stress driver of ecological changes in peatland A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 461: 272-291. DOI: https://www.doi.org/10.1016/j.palaeo.2016.08.038.

Somorowska U., 2009. Increase in the hydrological drought risk in different geographical regions of Poland in the 20th century. In: Gutry-Korycka M. (ed.) Study on extreme hydrological events. Studies in Geography 43: 97-114.

Spinoni J., Naumann G., Vogt J.V., 2017. Pan-European seasonal trends and recent changes of drought frequency and severity. Global and Planetary Change 148: 113-130. DOI: https://www.doi.org/10.1016/j.gloplacha.2016.11.013.

Stahl K., 2001. Hydrological drought – a study across Europe. Thesis (PhD), Albert-Ludwigs Universitat Freiburg. Freiburger Schriften zur Hydrologie. 15. Online: http://www.hydrology.uni-freiburg.de/publika/FSH-Bd15-Stahl.pdf (accessed 4 September 2021).

Stahl K., Demuth S., 1999. Linking streamflow drought to the occurrence of atmospheric circulation patterns. Hydrological Science Journal 44(3): 467-482.

Szumińska D., 2014. Runoff in the Wda drainage basin against the background of water management in the second half of the 20th century. Wydawnictwo UKW, Wdecki Park Krajobrazowy, Bydgoszcz.

Tallaksen L.M., Van Lanen H.A.J. (ed.), 2004. Hydrological drought. Processes and Estimation Methods for Streamlow and Groundwater. Amsterdam, Elsevier.

The drought – 1992. The range, intensity, the whys and the wherefores, conclusions in future, 1992. Materiały Badawcze IMGW. Seria: Hydrologia i Oceanologia. 16.

Tokarczyk T., 2010. Low flow as an indicator of hydrological drought. Monografie IMGW. Warszawa.

Tomaszewski E., 2012. Multiannual and seasonal of low flows in rivers of central Poland. Wydawnictwo UŁ. Łódź.

Tomaszewski E., 2015. Methods of dynamics estimation of river low-flows evolution and recession. In: Absalon D., Matysik M., Ruman M. (ed.), Novel methods and solutions in hydrology and water management. Monografie Komisji Hydrologicznej PTG. Sosnowiec, 3: 387-405.

Tomaszewski E., Kubiak-Wójcicka K., 2021. Low-flows in Polish rivers. In: Zeleňáková M., Kubiak-Wójcicka K., Negm A.M. (ed.), Management of water resources in Poland. Springer Water. Springer, Cham. DOI: https://www.doi.org/10.1007/978-3-030-61965-7_11.

Tomczyk A.M., 2014. Circulation-related conditioning of the occurrence of heatwaves in Poznań. Polish Geographical Review 86(1): 41-52.

Trenberth K.E., 1995. Atmospheric circulation climate changes. Climatic Change 31: 427-453.

Twardosz R., Niedźwiedź T., 2001. Influence of synoptic situations on the precipitation in Kraków (Poland). International Journal of Climatology 21: 467-481.

Twardosz R., Niedźwiedź T., Łupikasza E., 2011. The influence of atmospheric circulation on the type of precipitation (Krakow, southern Poland). Theoretical and Applied Climatology 104: 233-250. DOI: https://www.doi.org/10.1007/s00704-010-0340-5.

Twardosz R., Walanus A., Guzik I., 2021. Warming in Europe: Recent trends in annual and seasonal temperatures. Pure and Applied Geophysics 178: 4021-4032. DOI" https://www.doi.org/10.1007/s00024-021-02860-6.

Ustrnul Z., 2007. Variability of the westerly circulation index over Europe in the 20th century. In: Piotrowicz K., Twardosz R. (ed.), Wahania klimatu w różnych skalach przestrzennych i czasowych, Kraków: 55-63.

Ustrnul Z., Wypych, A., 2011. Extreme air temperature values in Poland according to different atmospheric circulation classifications. Prace i Studia Geograficzne 47: 87-95.

Van Loon A.F., 2015. Hydrological drought explained. WIREs Water 2: 359-392. DOI: https://www.doi.org/10.1002/wat2.1085.

Wibig J., 2008. Waves of warmth and coldness in Central Poland on the example of Łódź. In: Jokiel P. (ed.), Extreme phenomena and exceptional events in Central Poland. Acta Universitatis Lodziensis. Folia Geographica Physica 8: 27-61.

Wibig J., Podstawczyńska A., Rzepa M., Piotrowski P., 2009. Heatwaves in Poland – frequency, trends and relationships with atmospheric circulation. Geographia Polonica 82(1): 33-46.

Wilhite D.A., Glantz, M.H., 1985. Understanding the drought phenomenon: The role of definitions. Water International 10(3): 111-120.

WMO Statement on the State of the Global Climate in 2018, 2019. WMO-No. 1233.

Woodhouse C.A., Overpeck J.T., 1998. 2000 years of drought variability in the Central United States. Bulletin of the American Meteorological Society 79(12): 2693-2714.

World Meteorological Organization (WMO), 2012. Standardised Precipitation Index. User Guide (M. Svoboda, M. Hayes, D. Wood), WMO-No. 1090, Geneva.

Woś A., 2010. Climate of Poland in the Second Half of the 20th Century. Wydawnictwo Naukowe UAM, Poznań.

Wrzesiński D., 1999. The seasonal structure of the runoff in the Warta drainage basin and its environmental conditions. The Poznań Society for the Advancement of the Arts and Sciences. Publications of the Committee for Geography and Geology, 25.

Wrzesiński D., 2005. Changes of the hydrological regime of rivers of Northern and Central Europe in various periods of the North Atlantic Oscillation. Quaestiones Geographicae 24: 97-109.

Wrzesiński D., 2010. Spatial differentiation of the stability of the flow regime of European rivers. Bogucki Wydawnictwo Naukowe, Poznań.

Wrzesiński D., Paluszkiewicz R., 2011. Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe. Hydrology Research 42: 30-39.

Ziernicka-Wojtaszek A., 2021, Summer drought in 2019 on Polish territory A case study. Atmosphere 12: 1475. DOI: https://www.doi.org/10.3390/atmos12111475.