Demographic analysis of the Makkah Province for the purpose of evaluating the balance of the urban system

Main Article Content

Amani Derbali
Abdallah Farhi

Abstract

Reaching a well-adjusted population distribution is a major challenge for urban settlements. Various research works have been focusing on evaluating the demographic balance of urban systems worldwide. Regularities in population distribution among urban settlements have been noticed and confirmed by empirical studies in the contemporary era. These studies assert that both rank of a city in the demographic hierarchy and its population size are proportionally correlated in a balanced urban system. It has been proved that this correlation is established according to mathematical theories that have been scientifically identified and proved through in-depth research. This article aims to check the conformity of the population distribution of the Makkah Province to two main demographic, organisational theories. In this article, there will be an attempt to measure the variations, evaluate and assess the deviations, interpret the result thereof, and then compare the outcomes of the two methods applied on the Makkah Province.

Downloads

Download data is not yet available.

Article Details

How to Cite
Derbali, A., & Farhi, A. (2022). Demographic analysis of the Makkah Province for the purpose of evaluating the balance of the urban system. Quaestiones Geographicae, 41(2), 49-65. https://doi.org/10.2478/quageo-2022-0019
Section
Articles

References

  1. Beckmann M.J., 1957. On the equilibrium distribution of population in space. Bulletin of Mathematical Biophysics 81-90. DOI: https://doi.org/10.1007/BF02477881.
  2. Beckmann M.J., 1969. On the distribution of urban rent and residential density. Journal of Economic Theory 3: 60-67.
  3. Beckmann M.J., Golob T.F. Zahavi Y., 1983. Travel probability fields and urban spatial structure: 2. Empirical tests. Environment and Planning A 15(6): 727-738.
  4. Brakman S., 1999. The return of Zipf: A further understanding of the rank size distribution. Journal of Regional Science 39: 183-213.
  5. Chesnais J.-C., 1987. La mutation démographique (Demographic mutation). In: Objectif bébé. Le Seuil: 263-283.
  6. Dawod G.M., Mirza M.N., Al-Ghamdi K.A., Elzahrany R.A., 2013. Projected impacts of land use and road network changes on increasing flood hazards using a 4D GIS: A case study in Makkah metropolitan area. Saudi Arabia.
  7. Farhi Abdallah., 2001. Macrocéphalie et pôles d’équilibre: la wilaya de Biskra (Macrocephaly and urban balance: Biskra governorate). L’Espace géographique/3 (tome 30), 245-255. DOI: https://doi.org/10.3917/eg.303.0245.
  8. Fujita M., 1999. On the evolution of hierarchical urban systems. European Economic Review 43: 209-251.
  9. Gabaix X., 1999. Zipf’s law for cities: An explanation. The Quarterly Journal of Economics 114(3): 739-767.
  10. Guerin-Pace F., 1995. Rank size distributions and the proces of urban growth. Urban Studies 32(3): 551-562.
  11. Ha L.K., Sicilia-Garcia E.I., Ming J., Smith F.J. 2002. Extension of Zipf’s law to words and phrases. Coling: Proceedings of the 19th International Conference on Computational Linguistics, Taipei, 26-30 August 2002: 315-320.
  12. Hollingshead A.B., Zipf G.K., 1949. Human behavior and the principle of least effort: An introduction to human.
  13. Jefferson M., 1939. The law of the primate city. Geographical Review 29.
  14. Giesen K., Suedekum J., 2009. Zipf’s law for cities in the regions and the country. Journal of Economic Geography 11(4): 667-686.
  15. Krugman P., 1995. Development geography and economic theory. The MIT Press, Cambridge, MA.
  16. Krugman P., 1996. The self-organizing economy. Mitsui lectures in economics.
  17. Kyriakidou V., Michalakelis C., Varoutas D., 2011. Applying Zipf’s power law over population density and growth as network deployment indicator. Journal of Service Science and Management 4(02): 132.
  18. Ledraa T., Abu-Anzeh N., 2009. Regeneration through urban mega-projects in Riyadh. In: Whose Urban Renaissance?: 52-60. Routledge.
  19. Ledraa T., Saleh M., 2018. Urban growth boundary plans evaluation for small and medium-sized cities in Saudi Arabia. Emirates Journal for Engineering Research 23(1): 1-15.
  20. Linsky A.S., 1965. Some generalizations concerning primate cities. Annals of the Association of American Geographers 55(3): 506-510.
  21. Mehta S., 1964. Some demographic and economic correlates of primate cities: A case for revaluation. Demography 1: 136-147.
  22. Moomaw R.L., Alwosabi M.A., 2004. An empirical analysis of competing explanations of urban primacy evidence from Asia and the Americas. The Annals of Regional Science 38(1): 149-171.
  23. Roncayolo M., 2009. Réflexions sur la notion d’attractivité (Reflections over the attractiveness). In: PUCA, L’attractivité des territoires: regards croisés, Paris, Actes des séminaires, février-juillet 2007, 43-45.
  24. Rosen K.T., Resnick M., 1980. The size distribution of cities: An examination of the Pareto law and primacy. Journal of Urban Economics 8(2): 165-186.
  25. Rosen T.K., Resnick M., 1980. The size distribution of cities: An examination of the Pareto law and primacy. Journal of Urban Economics 8(2): 165-186. DOI: https://doi.org/10.1016/0094-1190(80)90043-1.
  26. Short J.R., Pinet-Peralta L.M., 2009. Urban primacy. Reopening the debate. Geography Compass 3(3): 1245-1266.
  27. Urzúa C., 2000. A simple and efficient test for Zipf’s Law. Economics Letters 66: 257-260.
  28. Varlet C., Guignet P., 2001. Démographie urbaine, urbanisation, urbanisme... (Urban demography, urbanisation, urbanism...). Histoire & mesure 16(XVI-3/4): 419-422.
  29. Véron J., 2006. Une dynamique urbaine complexe dans L’urbanisation du monde (Complex urban dynamics in the world urbanisation): 33-62.
  30. Yanguang C., 2010. Zipf’s law, hierarchical structure, and shuffling-cards model for urban development. Discrete Dynamics in Nature and Society 2012(1). DOI: https://doi.org/10.1155/2012/480196.
  31. Zipf G.K., 1949. Human behaviour and the principle of least effort. Addison-Wesley Press, Cambridge.