Impact of atmospheric circulation on the occurrence of very strong and extreme cold stress in Poland
PDF

Keywords

bioclimatology
UTCI
atmospheric circulation
cold stress
winter
Poland

How to Cite

Owczarek, M., & Tomczyk, A. M. (2022). Impact of atmospheric circulation on the occurrence of very strong and extreme cold stress in Poland. Quaestiones Geographicae, 41(3), 111–126. https://doi.org/10.2478/quageo-2022-0028

Abstract

The primary objective of the study was the determination of the spatial and multiannual variability of occurrence of days with very strong and extreme cold stress in Poland according to the Universal Thermal Climate Index (UTCI), as well as determination of baric conditions favouring their occurrence. The study was based on data from the years 1966/67 to 2018/19 from the Institute of Meteorology and Water Management – National Research Institute and National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR). The research showed a statistically significant decrease in the number of days with very strong and extreme cold stress on half of the analysed stations, and a slight tendency or no changes on the remaining stations. The occurrence of days with extreme cold stress in Poland, as revealed by the analysis was primarily related to the presence of high-pressure systems blocking zonal circulation. The study resulted in the designation of three circulation types, i.e. two types related to anticyclonic systems and one cyclonic type.

https://doi.org/10.2478/quageo-2022-0028
PDF

Funding

This work was supported by the National­ Science Centre, Poland (Grant №. UMO-2020/ 37/B/ST10/00217)

References

Bartoszek K., Wereski S., Krzyżewska A., Dobek M., 2017. The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography, Physical Geography Series 12: 41-49. DOI https://doi.org/10.1515/bgeo-2017-0004

Błażejczyk K., Baranowski J., Jendritzky G., Błażejczyk A., Bröde P., Fiala D., 2015. Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geographia Polonica 88(3): 439-453. DOI https://doi.org/10.7163/GPol.0027

Błażejczyk K., Błażejczyk A., 2014. Assessment of bioclimatic variability on regional and local scales in central Europe using UTCI. Scientific Annals of Alexandru Ioan Cuza University of Iaşi 60(1): 67-82. DOI https://doi.org/10.15551/SCIGEO.V60I1.263.

Błażejczyk K., Błażejczyk M., 2006. Polish Academy of Sciences. BioKlima ver.2.6. Online: www.igipz.pan.pl/bioklima.html (accessed 30 May 2020).

Błażejczyk A., Błażejczyk K., Baranowski J., Kuchcik M., 2018. Heat stress mortality and desired adaptation responses of healthcare system in Poland. International Journal of Biometeorology 62(3): 307-318. DOI https://doi.org/10.1007/s00484-017-1423-0

Błażejczyk K., Błażejczyk A., Baranowski J., Kuchcik M., 2020a. Assessment of mortality risk in Poland due to cold and heat stress. Climate Change Research 1(4): 67-75. DOI https://doi.org/10.30488/ccr.2020.252534.1028.

Błażejczyk K., Nejedlik P., Skrynyk O., Halaś A., Skrynyk O., Baranowski J., Mikulova K., 2020b. Thermal stress in northern Carpathians and air circulation. Miscellanea Geographica 24 (3): 147-160. DOI https://doi.org/10.2478/mgrsd-2020-0022

Błażejczyk K., Bröde P., Fiala D., Havenith G., Holmér I., Jendritzky G., Kampmann B., Kunert A., 2010. Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica 14: 91-102. DOI https://doi.org/10.2478/mgrsd-2010-0009

Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56(3): 515-535. DOI https://doi.org/10.1007/s00484-011-0453-2

Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenithm G., Epstein Y., Psikuta A., Kampmann B., 2013. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica 86(1): 5-10. DOI https://doi.org/10.7163/GPol.2013.1

Błażejczyk K., Kunert A., 2011. Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce [Bioclimatic principles of recreation and tourism in Poland]. Monografie, 13, IGiPZ PAN, Warsaw.

Błażejczyk K., Nejedlik P., Skrynyk O., Halaś A., Błażejczyk A., Mikulova K., 2021. Influence of geographical factors on thermal stress in northern Carpathians. International Journal of Biometeorology 65: 1553-1566. DOI https://doi.org/10.1007/s00484-020-02011-x.

Bröde P., Fiala D., Błażejczyk K., Holmer I., Jendritzky G., Kampmann B., Tinz B., Havenith G., 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56(3): 481-449. DOI https://doi.org/10.1007/s00484-011-0454-1

Bryś K., Ojrzyńska H., 2016. Bodźcowość warunków biometeorologicznych we Wrocławiu. Acta Geographica Lodziensia 104: 193-200.

Cattiaux J., Vautard R., Cassou C., You P., Masson-Delmotte V., Codron F., 2010. Winter 2010 in Europe: a cold extreme in a warming climate. Geophysical Research Letters 37: L20704. DOI https://doi.org/10.1029/2010GL044613

Di Napoli C., Pappenberger F., Cloke H.L., 2018. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 62(7): 1155-1165. DOI https://doi.org/10.1007/s00484-018-1518-2

Dobek M., Krzyżewska A., 2015. Wybrane zagadnienia z bioklimatu Lublina. Annales UMCS sec. B 70(2): 117-129. DOI https://doi.org/10.17951/b.2015.70.2.117

Domonkos P., Kysely J., Piotrowicz K., Petrovic P., Likso T., 2003. Variability of extreme temperature events in southcentral Europe during the 20th century and its relationship with large-scale circulation. International Journal of Climatology 23: 987-1010. DOI https://doi.org/10.1002/joc.929

Elcik C., Fuhrmann C.M., Mercer A.E., Davis R.E., 2017. Relationship between air mass type and emergency department visits for migraine headache across the Triangle region of North Carolina. International Journal of Biometeorology 61: 2245-2254. DOI https://doi.org/10.1007/s00484-017-1432-z

Environment Canada, 2020. Wind Chill index. Online: https://www.canada.ca/en/environment-climate-change.html (accessed 1 May 2020).

Esteban P., Jones P.D., Martin-Vide J., Mases M., 2005. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology 25: 319-329. DOI https://doi.org/10.1002/joc.1103

Fiala D., Lomas K.J., Stohrer M., 1999. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of Applied Physiology 87: 1957-1972. DOI https://doi.org/10.1152/jappl.1999.87.5.1957

Fiala D., Lomas K.J., Stohrer M., 2001. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology 45(3): 143-159. DOI https://doi.org/10.1007/s004840100099

Flemming G., 1983. Klimat - środowisko - człowiek [Climate-Environment - Man]. PWRiL, Warsaw.

Hoy A., Hänsel S., Maugeri M., 2020. An endless summer: 2018 heat episodes in Europe in the context of secular temperature variability and change. International Journal of Climatology 40(15): 6315-6336. DOI https://doi.org/10.1002/joc.6582

Idzikowska D., 2010. Bioclimatic conditions of Paris, Rome and Budapest on the basis of the Universal Thermal Climate Index. Miscellanea Geographica 14: 103-109. DOI https://doi.org/10.2478/mgrsd-2010-0010

IMGW PIB, 2022. Climate of Poland in 2021. https://www.imgw.pl/sites/default/files/inline-files/imgw-pib-report_climate-od-poland-2021.pdf (accessed 15 May 2022)

IPCC, 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla P.R., Skea J., Calvo Buendia E., Masson-Delmotte V., Pörtner H.O., Roberts D.C., Zhai P., Slade R., Connors S., van Diemen R., Ferrat M., Haughey E., Luz S., Neogi S., Pathak M., Petzold J., Portugal Pereira J., Vyas P., Huntley E., Kissick K., Belkacemi M., Malley J. (eds). Technical Summary p. 41 World Meteorological Organization, Geneva, Switzerland.

IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds). Cambridge University Press. In Press. Online: https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ (accessed 30 August 2020).

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorology Society 77: 437-470. DOI

https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kolendowicz L., Półrolniczak M., Szyga-Pluta K., Bednorz E., 2018. Human-biometeorological conditions in the southern Baltic coast based on the universal thermal climate index (UTCI). Theoretical and Applied Climatology 134(1-2): 363-379. DOI https://doi.org/10.1007/s00704-017-2279-2

Krauskopf T., Huth R., 2020. Temperature trends in Europe: comparison of different data sources. Theoretical and Applied Climatology 139: 1305-1316. DOI https://doi.org/10.1007/s00704-019-03038-w

Krzyżewska A., Wereski S., 2014. Fale upałów i mrozów w wybranych stacjach Polski na tle regionów bioklimatycznych (2000-2010). Przegląd Geofizyczny 1-2: 99-109.

Krzyżewska A., Wereski S., Demczuk P., 2019. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 75: 183-189. DOI https://doi.org/10.1002/wea.3497

Krzyżewska A., Wereski S., Dobek M., 2021. Summer UTCI variability in Poland in the twenty-first century. International Journal of Biometeorology 65: 1497-1513. DOI https://doi.org/10.1007/s00484-020-01965-2

Kuchcik M., 2017. Warunki termiczne w Polsce na przełomie XX i XXI wieku i ich wpływ na umieralność [Thermal conditions in Poland at the turn of the 20th and 21st centuries, and their impact on mortality]. IGiPZ PAN, Warsaw.

Kuchcik M., 2020. Mortality and thermal environment (UTCI) in Poland-long-term, multi-city study. International Journal of Biometeorology 65: 1529-1541. DOI https://doi.org/10.1007/s00484-020-01995-w

Kuchcik M., Błażejczyk K., Halaś A., 2021. The stimuli of thermal environment defined according to UTCI in Poland. Geographia Polonica 94(2): 183-200. DOI https://doi.org/10.7163/GPol.0200

Lhotka O., Kyselý J., 2015. Characterizing joint effects of spatial extent, temperature magnitude and duration of heat waves and cold spells over Central Europe. International Journal of Climatology 35(7): 1232-1244. DOI https://doi.org/10.1002/joc.4050

Mann H.B., 1945. Nonparametric tests against trend. Econometrica 13(3): 245-259. DOI https://doi.org/10.2307/1907187

Matzarakis A., Laschewski G., Muthers S., 2020. The heat health warning system in Germany-application and warnings for 2005 to 2019. Atmosphere 11: 1-13. DOI https://doi.org/10.3390/atmos11020170

Mukamal K.J., Wellenius G.A., Suh H.H., Mittleman M.A. 2009. Weather and air pollution as triggers of severe headaches. Neurology 72: 922-927. DOI https://doi.org/10.1212/01.wnl.0000344152.56020.94

Nastos P.T., Bleta A.G., Matsangouras I.T., 2017. Human thermal perception related to Föhn winds due to Saharan dust outbreaks in Crete Island, Greece. Theoretical and Applied Climatology 128: 635-647. DOI https://doi.org/10.1007/s00704-015-1724-3

National Weather Service, 2020. Wind Chill Chart. Online: https://www.weather.gov/safety/cold-wind-chill-chart (accessed 1 May 2020).

Niedźwiedź T., 1981. Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły [Synoptic situations and their influence on spatial differentiation of the selected climatic elements in the Upper Vistula basin]. Rozprawy Habilitacyjne, 58, Uniwersytet Jagielloński, Cracow.

Novak M., 2013. Use of the UTCI in the Czech Republic. Geographia Polonica 86(1): 21-28. DOI https://doi.org/10.7163/GPol.2013.3

Nowosad M., Rodzik B., Wereski S., Dobek M., 2013. The UTCI Index in Lesko and Lublin and its circulation determinants. Geographia Polonica 86(1): 29-36. DOI https://doi.org/10.7163/GPol.2013.4

Okoniewska M., Więcław M., 2013. Zmienność wieloletnia warunków bioklimatycznych w II połowie XX wieku w Polsce w godzinach okołopołudniowych na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Journal of Health Science 3(15): 116-129.

Owczarek M., 2019. The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology 137(1-2): 855-869. DOI https://doi.org/10.1007/s00704-018-2633-z

Owczarek M., 2021. The influence of air temperature diversity in central Europe on the occurrence of very strong and extreme cold stress in Poland in winter months. Geographia Polonica 94(2): 251-266. DOI https://doi.org/10.7163/GPol.0204

Owczarek M., Filipiak J., 2016. Contemporary changes of thermal conditions in Poland, 1951-2015. Bulletin of Geography, Physical Geography Series 10: 31-50. DOI https://doi.org/10.1515/bgeo-2016-0003

Owczarek M., Marosz M., Kitowski M., 2019. The influence of atmospheric circulation on the occurrence of heat stress on human beings on polish coast of the Baltic Sea. In: Kolendowicz L., Bednorz E., Tomczyk A.M. (eds), Climate variability in Poland and Europe and its circulation conditions. Studia i Prace z Geografii 77 (pp. 135-156).

Pecelj M., Błażejczyk A., Vagić N., 2021. Extreme biothermal conditions in Vranje health resort region (Serbia) based on UTCI index. Geographia Polonica 94(2): 201-222. DOI https://doi.org/10.7163/GPol.0201

Petralli M., Massetti L., Pearlmutter D., Brandani G., Messeri A., Orlandini S., 2020. UTCI field measurements in an urban park in Florence (Italy). Miscellanea Geographica 24(3): 111-117. DOI https://doi.org/10.2478/mgrsd-2020-0017

Piotrowski P., 2008. Dobowa zmienność odczuć cieplnych na obszarach miejskich i pozamiejskich na tle cyrkulacji atmosferycznej [Daily variability of thermal sensations on urban and rural areas in relations to atmospheric circulation]. In: Kłysik K., Wibig J., Fortuniak K. (eds), Klimat i bioklimat miast (pp. 537-549). Uniwersytet Łódzki, Łodź.

Półrolniczak M., Szyga-Pluta K., Kolendowicz L., 2016. Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Acta Geographica Lodziensia 104: 147-161.

Porębska M., Zdunek M., 2013. Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteorologische Zeitschrift 22(5): 533-540. DOI https://doi.org/10.1127/0941-2948/2013/0455

Report of the Government Centre for Security. Online: http://rcb.gov.pl/zagrozenia-ocena-tygodniowa/ (accessed 27 February 2018).

Shitzer A., 2018. Estimation of wind chill equivalent temperatures (WCETs). In: Shrivastava D. (ed.), Theory and Applications of Heat Transfer in Humans 1: 753-772. DOI https://doi.org/10.1002/9781119127420.ch35

Spinoni J., Lakatos M., Szentimrey T., Bihari Z., Szalai S., Vogt J., Antofie T., 2015. Heat and cold waves trends in the Carpathian Region from 1961 to 2010. International Journal of Climatology 35(14): 4197-4209. DOI https://doi.org/10.1002/joc.4279

The Copernicus Climate Change Service, 2020. European State of the Climate 2019. Online: https://climate.copernicus.eu (accessed 20 May 2020).

Tikuisis P., Osczevski R.J., 2003. Facial cooling during cold air exposure. Bulletin of the American Meteorological Society 84 (7): 927-933. DOI https://doi.org/10.1175/BAMS-84-7-927.

Tomczyk A.M., Bednorz E., 2019. Heat waves in Central Europe and tropospheric anomalies of temperature and geopotential heights. International Journal of Climatology 39(11): 4189-4205. DOI https://doi.org/10.1002/joc.6067

Tomczyk A.M., Bednorz E., 2020. The extreme year - analysis of thermal conditions in Poland in 2018. Theoretical and Applied Climatology 139: 251-260. DOI https://doi.org/10.1007/s00704-019-02968-9

Tomczyk A.M., Bednorz E., Matzarakis A., 2020. Human-biometeorological conditions during heat waves in Poland. International Journal of Climatology 40(12): 5043-5055. DOI https://doi.org/10.1002/joc.6503

Tomczyk A.M., Bednorz E., Półrolniczak M., Kolendowicz L., 2019. Strong heat and cold waves in Poland in relation with the large-scale atmospheric circulation. Theoretical and Applied Climatology 137(3-4): 1909-1923. DOI https://doi.org/10.1007/s00704-018-2715-y

Tomczyk A.M., Owczarek M., 2020. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology 139: 893-905. DOI https://doi.org/10.1007/s00704-019-02998-3

Twardosz R., Kossowska-Cezak U., 2016. Exceptionally cold and mild winters in Europe (1951-2010). Theoretical and Applied Climatology 125: 399-411. DOI https://doi.org/10.1007/s00704-015-1524-9

Twardosz R., Kossowska-Cezak U., 2021. Large-area thermal anomalies in Europe (1951-2018). Temporal and Spatial Patterns. Atmospheric Research 251: 105434. DOI https://doi.org/10.1016/j.atmosres.2020.105434

Twardosz R., Walanus A., Guzik I., 2021. Warming in Europe: recent trends in annual and seasonal temperatures. Pure and Applied Geophysics 178: 4021-4032. DOI https://doi.org/10.1007/s00024-021-02860-6

Urban A., Hondula D.M., Hanzlíková H., Kyselý J., 2019. The predictability of heat-related mortality in Prague, Czech Republic, during summer 2015 - a comparison of selected thermal indices. International Journal of Biometeorology 63: 535-548. DOI https://doi.org/10.1007/s00484-019-01684-3

Walikewitz N., Jänicke B., Langner M., Endlicher W., 2018. Assessment of indoor heat stress variability in summer and during heat warnings: a case study using the UTCI in Berlin, Germany. International Journal of Biometeorology 62: 29-42. DOI https://doi.org/10.1007/s00484-015-1066-y

Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301): 236-244. DOI https://doi.org/10.1080/01621459.1963.10500845

Wereski S., Krzyżewska A., Dobek M., 2020. Winter UTCI variability in Poland in the 21st century. Miscellanea Geographica 24(3): 128-137. DOI https://doi.org/10.2478/mgrsd-2020-0021

Wibig J., 2018. Heat waves in Poland in the period 1951-2015: trends, patterns and driving factors. Meteorology, Hydrology and Water Management 6(1): 37-45. DOI https://doi.org/10.26491/mhwm/78420

Wibig J., Głowicki B., 2002. Trends of minimum and maximum temperature in Poland. Climate Research 20: 123-133. DOI https://doi.org/10.3354/cr020123

Wibig J., Podstawczyńska A., Rzepa M., Piotrowski P., 2009. Heat waves in Poland - frequency, trends and relationships with atmospheric circulation. Geographia Polonica 82 (1): 33-45. DOI https://doi.org/10.7163/GPol.2009.1.3

Yang A.C., Fuh J.L., Huang N.E., Shia B.C., Peng C.K., Wang S.J., 2011. Temporal associations between weather and headache: analysis by empirical mode decomposition. PLoS ONE 6(1): e14612. DOI https://doi.org/10.1371/journal.pone.0014612

Yarnal B., 1993. Synoptic climatology in environmental analysis. Belhaven Press, London.