Abstract
Remote sensing techniques based on soil spectral characteristics are the key to future land management; however, they still require field measurement and an agrochemical laboratory for the calibration of the soil property model. Visible and near-infrared diffuse reflectance spectroscopy has proven to be a rapid and effective method. This study aimed to assess the suitability of multispectral data acquired with the agricultural digital camera in determining soil properties. This 3.2-Mpx camera captures images in three spectral bands – green, red and near-infrared. First, the reference data were collected, which consist of 151 samples that were later examined in the laboratory to specify the granulometric composition and to quantify some chemical elements. Second, additional soil properties such as cation exchange capacity, organic carbon and soil pH were measured. Finally, the agricultural digital camera photograph was taken for every soil sample. Reflectance values in three available spectra bands were used to calculate the spectra indices. The relationships between the collected data were calculated using the independent validation regression model such as Cubist and cross-validation model like partial least square in R Studio. Additionally, different types of data normalisation multiplicative scatter correction, standard normal variate, min–max normalisation, conversion into absorbance] were used. The results proved that the agricultural digital camera is suitable for soil property assessment of sand and silt, pH, K, Cu, Pb, Mn, F, cation exchange capacity and organic carbon content. Coefficient of determina-tion varied from 0.563 (for K) to 0.986 (for soil organic carbon). Higher values were obtained with the Cubist regression model than with partial least squares.
Funding
The research has been funded by the Institute of Physical Geography and Environmental Planning at Adam Mickiewicz University.
References
Avola G., Gennaro, S.F. di Cantini C., Riggi E., Muratore F., Tornambè C., Matese A., 2019. Remotely sensed vegetation indices to discriminate field-grown olive cultivars. Remote Sensing 11. DOI https://doi.org/10.3390/rs11101242
Bannari A., Morin D., Bonn F., Huete A.R., 1995. A review of vegetation indices. Remote Sensing Reviews 13: 95-120. DOI https://doi.org/10.1080/02757259509532298
Candiago S., Remondino F., Giglio M. de Dubbini M., Gattelli M., 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing 7: 4026-4047, MDPI AG. DOI https://doi.org/10.3390/rs70404026
Chong I.G., Jun C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems 78: 103-112. DOI https://doi.org/10.1016/j.chemolab.2004.12.011
Crippen R.E., 1990. Calculating the vegetation index faster. Remote Sensing of Environment 34: 71-73. DOI https://doi.org/10.1016/0034-4257(90)90085-Z
Croft H., Kuhn N.J., Anderson K., 2012. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena 94: 64-74. DOI https://doi.org/10.1016/j.catena.2012.01.001
Demattê J.A.M., Fiorio P.R., 2009. Orbital and laboratory spectral data to optimize soil analysis. Scientia Agricola 66(2): 250-257. DOI https://doi.org/10.1590/S0103-90162009000200015
Dematte J.A.M., Huete A.R., Ferreira Jr. L.G., Nanni M.R., Alves M.C., Fiorio P.R., 2009. Methodology for bare soil detection and discrimination by landsat TM image. The Open Remote Sensing Journal 2(1): 24-35. DOI https://doi.org/10.2174/1875413900902010024
De Paul Obade V., Lal R., 2013. Assessing land cover and soil quality by remote sensing and geographical information systems (GIS). Catena 104: 77-92. DOI https://doi.org/10.1016/j.catena.2012.10.014
FAO [Food and Agriculture Organisation[, 2021. Standard operating procedure for soil calcium carbonate equivalent - Titrimetric method. Online: www.fao.org/publications/card/en/c/CA8621EN/ (accessed July 17, 2022).
Gasmi A., Gomez C., Chehbouni A., Dhiba D., Elfil H., 2022. Satellite multi-sensor data fusion for soil clay mapping based on the spectral index and spectral bands approaches. Remote Sensing 14(5). DOI https://doi.org/10.3390/rs14051103
Gasmi A., Gomez C., Lagacherie P., Zouari H., 2019. Surface soil clay content mapping at large scales using multispectral (VNIR-SWIR) ASTER data. International Journal of Remote Sensing 40(4): 1506-1533. DOI https://doi.org/10.1080/01431161.2018.1528018
Gholizadeh A., Boruvka L., Saberioon M.M., Kozák J., Vašát R., Nemecek K., 2015. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil and Water Research 10: 218-227, Czech Academy of Agricultural Sciences. DOI https://doi.org/10.17221/113/2015-SWR
Gunathilaka M.D.K.L., 2021. Modelling the behavior of DVI and IPVI vegetation indices using multi-temporal remotely sensed data. International Journal of Environment, Engineering & Education 3(1): 9-16. DOI https://doi.org/10.55151/ijeedu.v3i1.42
International Standard (ISO) 11260, 1994. Soil quality - Determination of effective cation exchange capacity and base saturation level using barium chloride solution.
International Standard (ISO) 10693, 2002. Soil quality - Determination of carbonate content - Volumetric method.
IUSS Working Group WRB, 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Lan Y., Thomson S.J., Huang Y., Hoffmann W.C., Zhang H., 2010, October. Current status and future directions of precision aerial application for site-specific crop management in the USA. Computers and Electronics in Agriculture 74: 34-38. DOI https://doi.org/10.1016/j.compag.2010.07.001
Liu W., Chen S., Qin X., Baumann F., Scholten T., Zhou Z., Sun W., et al., 2012. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters 7 035401. DOI https://doi.org/10.1088/1748-9326/7/3/035401
Mammadov E., Denk M., Riedel F., Lewinska K., Kaźmierowski C., Glaesser C., 2020. Visible and near-infrared reflectance spectroscopy for assessment of soil properties in the Caucasus Mountains, Azerbaijan. Communications in Soil Science and Plant Analysis 51: 2111-2136. DOI https://doi.org/10.1080/00103624.2020.1820027
Martínez M.L.J., 2017. Relación entre el estado nutricional de los cultivos, las mediciones espectrales y las imágenes Sentinel 2. Agronomia Colombiana 35: 205-215. DOI https://doi.org/10.15446/agron.colomb.v35n2.62875
Matese A., Gennaro S.F. di Berton A., 2017. Assessment of a canopy height model (CHM) in a vineyard using UAV-based multispectral imaging. International Journal of Remote Sensing 38: 2150-2160. DOI https://doi.org/10.1080/01431161.2016.1226002
Mehlich A., 1984. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Communications in Soil Science and Plant Analysis 15: 1409-1416. DOI https://doi.org/10.1080/00103628409367568
Milton E.J., 1987. Review article: Principles of field spectroscopy. International Journal of Remote Sensing 8: 1807-1827. DOI https://doi.org/10.1080/01431168708954818
Minasny B., McBratney A.B., 2008. Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometrics and Intelligent Laboratory Systems 94: 72-79. DOI https://doi.org/10.1016/j.chemolab.2008.06.003
Motohka T., Nasahara K.N., Oguma H., Tsuchida S., 2010. Applicability of Green-Red Vegetation Index for remote sensing of vegetation phenology. Remote Sensing 2: 2369-2387. DOI https://doi.org/10.3390/rs2102369
Nanni M.R., Dematte J.A.M., 2006. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Science Society of America Journal 70: 393-407. DOI https://doi.org/10.2136/sssaj2003.0285.
Nelson D.W., Sommers L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks D.L., et al. (eds.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book Series No. 5, SSSA and ASA, Madison, WI: 961-1010. DOI https://doi.org/10.2136/sssabookser5.3.c34
Ng W., Minasny B., Jeon S.H., McBratney A., 2022. Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions. Soil Security 6: 100043. DOI https://doi.org/10.1016/j.soisec.2022.100043
Nguyen T.T., Janik L.J., Raupach B.M., 1991. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy in soil studies. Australian Journal of Soil Research 29: 49-67. DOI https://doi.org/10.1071/SR9910049
Peng Y., Xiong X., Adhikari K., Knadel M., Grunwald S., Greve M.H., 2015. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra. PLoS ONE 10. DOI https://doi.org/10.1371/journal.pone.0142295
Peng, Y., Zhao L., Hu Y., Wang G., Wang L., Liu Z., 2019. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy. ISPRS International Journal of Geo-Information 8. DOI https://doi.org/10.3390/ijgi8100437
PN-ISO-10390, 1997. Soil quality-determination of pH. Polish Committee for Standardization, Warsaw.
Quinlan J.R., 1992. Learning with continuous classes. Proceedings of the 5th Australian joint Conference on Artificial Intelligence, 16-18 November 1992, Hobart: 343-348.
Rinnan Å., Berg F. van den Engelsen S.B., 2009, November. Review of the most common pre-processing techniques for near-infrared spectra. Trends in Analytical Chemistry 28(10): 1201-1222. DOI https://doi.org/10.1016/j.trac.2009.07.007
Saberioon M., Amin M., Gholizadeh A., 2012. Estimation of nitrogen of rice in different growth stages using Tetracam agriculture digital camera. The Philippine Agricultural Scientist 96(1): 116-121.
Saeys W., Mouazen A.M., Ramon H., 2005. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosystems Engineering 91: 393-402. DOI https://doi.org/10.1016/j.biosystemseng.2005.05.001
Swain K.C., Thomson S.J., Jayasuriya H.P.W., 2010. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE 53: 21-27. DOI https://doi.org/10.13031/2013.29493
Vega F.A., Ramírez F.C., Saiz M.P., Rosúa F.O., 2015. Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering 132: 19-27. DOI https://doi.org/10.1016/j.biosystemseng.2015.01.008
Vestergaard R.J., Vasava H.B., Aspinall D., Chen S., Gillespie A., Adamchuk V., Biswas A., 2021. Evaluation of optimized preprocessing and modeling algorithms for prediction of soil properties using vis-nir spectroscopy. Sensors 21, 6745: 2-18. DOI https://doi.org/10.3390/s21206745
Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O., 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131: 59-75. DOI https://doi.org/10.1016/j.geoderma.2005.03.007
Wenjun J., Zhou S., Jingyi H., Shuo L., 2014. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE 9(8), e105708. DOI https://doi.org/10.1371/journal.pone.0105708
Wetterlind J., Stenberg B., Söderström M., 2008. The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture 9: 57-69. DOI https://doi.org/10.1007/s11119-007-9051-z
Wojewódzki Inspektorat Ochrony Środowiska w Poznaniu 2013. Raport o stanie środowiska w Wielkopolsce w roku 2012. Biblioteka Monitoringu Środowiska, Poznań.
Wold S., Sjostrom M., Eriksson L., Sweden S., 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58(2): 109-130. DOI https://doi.org/10.1016/S0169-7439(01)00155-1
Xu S., Wang M., Shi X., Yu Q., Zhang Z., 2021. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Science of the Total Environment 754, 142135. DOI https://doi.org/10.1016/j.scitotenv.2020.142135
License
Copyright (c) 2022 Agnieszka Glinko, Cezary Kaźmierowski, Jan Piekarczyk, Sławomir Królewicz
This work is licensed under a Creative Commons Attribution 4.0 International License.