Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies
PDF

Keywords

groundwater–river water interactions
hyporheic zone
gradientmeter
Moszczenica River
Poland

How to Cite

Marciniak, M., Ziułkiewicz, M., & Górecki, M. (2022). Variability of water exchange in the hyporheic zone of a lowland river in Poland based on gradientometric studies. Quaestiones Geographicae, 41(3), 141–156. https://doi.org/10.2478/quageo-2022-0030

Abstract

The Moszczenica is a lowland river, which is a third-order river with a length of 55 km; it flows into the Bzura River in central Poland. The objective of this study was to evaluate two important factors in the exchange between surface water and groundwater in the hyporheic zone: a considerable change in water flow conditions and various origins of riverbed sections, natural and artificial. To identify the spatial variation of the hydraulic gradient in the hyporheic zone of the river, a gradientmeter was applied. The measurements show that at low water stages, upwelling was dominant, with an evidently inactive zone, whereas downwelling was inconsiderable. However, the morphology of the riverbed changed during the flood flow, and downwelling clearly dominated. Upwelling zones retained their activity despite a major change in hydrological conditions. Present studies on the artificially dug Moszczenica Canal have documented outflow of water from an artificial medieval canal to a naturally formed drainage base. This means that despite the passage of hundreds of years, the natural drainage base of the Moszczenica River is still active. Studies have demonstrated the applicability of the gradientmeter for evaluating the interaction between surface and ground-waters in the hyporheic zone.

https://doi.org/10.2478/quageo-2022-0030
PDF

Funding

This research has been partly funded by the National Science Centre projects: NCN 2015/17/8/ST10/01833 entitled: Conditions of the daily fluctuations in the levels of water in rivers and springs taking into account the influence of hyporheic zone.

References

Allen D.J., Darling W.G., Gooddy D.C., Lapworth D.J., Newell A.J., Williams A.T., Allen D., Abesser C., 2010. Interaction between groundwater, the hyporheic zone and a Chalk stream: A case study from the River Lambourn, UK. Hydrogeology Journal 18: 1125-1141. DOI https://doi.org/10.1007/s10040-010-0592-2

Amoros C., Gilbert J., Greenwood M.T., 1996. Interactions between units of the fluvial hydrosystem. In: Petts G.E., Amoros C. (eds), Fluvial Hydrosystems. Chapman & Hall, London, New York: 84-210. DOI https://doi.org/10.1007/978-94-009-1491-9_9

Battin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biology 48: 995-1014. DOI https://doi.org/10.1046/j.1365-2427.2003.01062.x

Bencala K.E., 2000. Hyporheic zone hydrological processes. Hydrological Processes 14: 2797-2798. https://doi.org/10.1002/1099-1085(20001030)14:15<2797::AID-HYP402>3.0.CO;2-6

Bestland E., George A., Greenc G., Olifenta V., Mackay D., Whalen M., 2017. Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia. Journal of Hydrology, Regional Studies 9: 216-235. DOI https://doi.org/10.1016/j.ejrh.2016.12.087

Bhaskar A.S., Harvey J.W., Henry E.J., 2012. Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resource Research 48: W08524. DOI https://doi.org/10.1029/2011WR011784

Biksey T.M., Gross E.D., 2001. The Hyporheic zone: Linking groundwater and surface water - Understanding the Paradigm. Remediation 12(1): 55-62. DOI https://doi.org/10.1002/rem.1025

Błachuta J., Picińska-Fałtynowicz J., Czoch K., Kulesza K., 2010. Abiotyczne typy wód płynących w Polsce. Gospodarka Wodna 5.

Boano F., Harvey J.W., Marion A., Packman A.I., Revelli R., Ridolfi L., Wörman A., 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics 52: 603-679. DOI https://doi.org/10.1002/2012RG000417

Boano F., Revelli R., Ridolfi L., 2007. Bedform-induced hyporheic exchange with unsteady flows. Advances in Water Resources 30: 148-156. DOI https://doi.org/10.1016/j.advwatres.2006.03.004

Boulton A.J., 2007. Hyporheic rehabilitation in rivers: Restoring vertical connectivity. Freshwater Biology 52: 632-650. DOI https://doi.org/10.1111/j.1365-2427.2006.01710.x

Boulton A.J., Datry T., Kasahara T., Mutz M., Stanford J.A., 2010. Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29: 26-40. DOI https://doi.org/10.1899/08-017.1

Briggs M.A., Lautz L.K., McKenzie J.M., Gordon R.P., Hare D., 2012. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resource Research 48: W02527. DOI https://doi.org/10.1029/2011WR011227

Cardenas M.B., Wilson J.L., 2007. Exchange across a sediment-water interface with ambient groundwater discharge. Journal of Hydrology 346: 69-80. DOI https://doi.org/10.1016/j.jhydrol.2007.08.019

Czarnecka H., 2005. Atlas of the hydrographic division of Poland. Polish Institute of Meteorology and Water Management - National Research Institute, Warsaw, Poland.

Dahm C.N., Grimm N.B., Marmonier P., Valett H.M., Vervier P., 1998. Nutrient dynamics at the interface between surface waters and groundwaters. Freshwater Biology 40: 427-451. DOI: https://doi.org/10.1046/j.1365-2427.1998.00367.x

Dubaniewicz H., 1974. Climate of the Łódź Voivodeship. Acta Geographica Lodziensia, 34.

Fetter C.W., 2001. Applied hydrogeology. Prentice Hall, Upper Saddle River, NJ.

Gerecht K.E., Bayani Cardenas M., Guswa A.J., Sawyer A.H., Nowinski J.D., Swanson T.E., 2011. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resources Research 47: W03524. DOI https://doi.org/10.1029/2010WR009794

Gooseff M.N., 2010. Defining Hyporheic zones - Advancing our conceptual and operational definitions of where stream water and groundwater meet. Geography Compass 4(8): 945-955. DOI https://doi.org/10.1111/j.1749-8198.2010.00364.x

Grodzka-Łukaszewska M., Pawlak Z., Sinicyn G., 2021. Spatial distribution of the water exchange through river cross-section - Measurements and the numerical model. Archives of Environmental Protection 47(1): 69-79. DOI https://doi.org/10.24425/aep.2021.136450.

Grygoruk M., Szałkiewicz E., Grodzka-Łukaszewska M., Mirosław-Świątek D., Oglęcki P., Pusłowska-Tyszewska D., Sinicyn G. Okruszko T., 2021. Revealing the influence of hyporheic water exchange on the composition and abundance of bottom-dwelling macroinvertebrates in a temperate lowland river. Knowledge & Management of Aquatic Ecosystems 422 37: 1-9. DOI https://doi.org/10.1051/kmae/2021036

Harvey J.W., Drummond J.D., Martin R.L., McPhillips L.E., Packman A.I., Jerolmack D.J., Stonedahl S.H., Aubeneau A.F., Sawyer A.H., Larsen L.G., Tobias C.R., 2012. Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research 117(G4), G00N11: 1-20. DOI https://doi.org/10.1029/2012JG002043

Harvey J.W., Wagner B.J., Bencala K.E., 1996. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange. Water Resources Research 32: 2441-2451. DOI https://doi.org/10.1029/96WR01268

Hayashi M., Rosenberry D.O., 2002. Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40: 309-316. DOI https://doi.org/10.1111/j.1745-6584.2002.tb02659.x

Jokiel P., 2004. Central Poland's water resources at the threshold of the 21st century. Publishing House of University of Łódź, Łódź.

Kamiński J., 1993. Late Pleistocene and Holocene transformation of the Moszczenica valley. Acta Geographica Lodziensia 64.

Kasahara T., Datry T., Mutz M., Boulton A.J., 2009. Treating causes not symptoms: Restoration of surface-groundwater interactions in rivers. Marine and Freshwater Research 60: 976-981. DOI https://doi.org/10.1071/MF09047

Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C., Drummond J.D., Gaona Garcia J., Galloway J., Gomez-Velez J.,Grabowski R. C., Herzog S.P., Hinkelmann R., Höhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Prats A.L., Magliozz C., Meinikmann K., Babak Mojarrad B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putschew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanafield M., Singh T., Ward A.S., Wolke P., Wörman A., Wu L., 2019. Is the hyporheic zone relevant beyond the scientific community? Water 11: 2230. DOI https://doi.org/10.3390/w11112230

Malzone J.M., Anseeuw S.K., Lowry Ch., S., Allen-King R., 2016. Temporal Hyporheic zone response to water table fluctuations. Groundwater 54: 274-285. DOI https://doi.org/10.1111/gwat.12352

Marciniak M., Chudziak Ł., 2015. A new method of measuring the hydraulic conductivity of the bottom sediment. Przegląd Geologiczny 63: 919-925.

Marzadri A., Tonina D., Bellin A., Valli A., 2016. Mixing interfaces, fluxes, residence times and redox 1 conditions of the hyporheic zones induced by dune-like 2 bedforms and ambient groundwater flow. Advances in Water Resources 88: 139-151. DOI https://doi.org/10.1016/j.advwatres.2015.12.014

Pazdro Z., Kozerski B., 1990. General hydrogeology. Wydawnictwa Geologiczne, Warszawa.

Song J., Jiang W., Xu S., Zhang G., Wang L., Wen M., Zhang B., Wang Y., Long Y., 2016. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Hydrogeology Journal 24: 2049-2062. DOI https://doi.org/10.1007/s10040-016-1449-0

Sophocleous M., 2002. Interactions between groundwater and surface water: The state of the science. Hydrogeological Journal 10: 52-67. DOI https://doi.org/10.1007/s10040-001-0170-8

Stelzer R.S., Bartsch L.A., Richardson W.B., Strauss E.A., 2011. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments. Freshwater Biology 56: 2021-2033. DOI https://doi.org/10.1111/j.1365-2427.2011.02632.x

Storey R.G., Howard K.W.F., Williams D.D., 2003. Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model. Water Resources Research 39(2), 1034. DOI https://doi.org/10.1029/2002WR001367

Szczepański W., 1995. Atlas of water gauges for the needs of state environmental monitoring. Inspection for Environmental Protection, Warsaw.

Tonina D., 2012. Surface water and streambed sediment interaction: The hyporheic exchange, in Fluid Mechanics of Environmental Interfaces. In: Gualtieri C., Mihailović D.T. (eds), Fluid mechanics of environmental interfaces. CRC Press, Taylor and Francis Group, London: 255-294. DOI https://doi.org/10.1201/b13079-13

Tonina, D., Buffington J.M., 2007. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling, Water Resources Research 43: W01421. DOI https://doi.org/10.1029/2005WR004328

Toth J., 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68: 4795-4812. DOI https://doi.org/10.1029/JZ068i016p04795

Triska F.T., Kennedy V.C., Avanzino R.J., Zellweger G.W., Bencala K.E., 1989. Retention and transport of nutrients in a third-order stream in northwestern California. Hyporheic processes. Ecology 70: 1893-1905. DOI https://doi.org/10.2307/1938120

Winter T.C., Harvey J.W., Franke O.L., Alley W.M., 1998. Ground water and surface Water: A single resource. U.S. Geological Survey Circular 1139. DOI https://doi.org/10.3133/cir1139

Wondzell S.M., 2011. The role of the Hyporheic zone across stream networks. Hydrological Processes 25(22): 3525-3532. DOI https://doi.org/10.1002/hyp.8119

Wörman A., Packman A.I., Johansson H., Jonsson K., 2002. Effect of flow-induced exchange in Hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research. 38(1): 2-1-2-15. DOI https://doi.org/10.1029/2001WR000769

Wörman A., Wachniew P., 2007. Reach scale and evaluation methods as limitations for transient storage properties in streams and rivers. Water Resources Research. 43(10), W10405: 1-13. DOI https://doi.org/10.1029/2006WR005808

Wrzesiński D., 2016. Use of entropy in the assessment of uncertainty of river runoff regime in Poland. Acta Geophysica 64: 1825-1839. DOI https://doi.org/10.1515/acgeo-2016-0073

Wrzesiński D., 2017. Regimes of the Polish rivers. In: Jokiel P., Marszelewski W., Pociask-Karteczka J. (eds), Hydrology of Poland. PWN, Warsaw: 215-222.

Zimmer M.A., Lautz L.K., 2014. Temporal and spatial response of hyporheic zone geochemistry to a storm event. Hydrological Processes 28: 2324-2337. DOI https://doi.org/10.1002/hyp.9778