Reflectance spectroscopy in geology and soil sciences: Literature review
PDF

Keywords

reflectance spectroscopy
mineral spectra
geological mapping
soil studies

How to Cite

Badura, I., & Dąbski, M. (2022). Reflectance spectroscopy in geology and soil sciences: Literature review. Quaestiones Geographicae, 41(3), 157–167. https://doi.org/10.2478/quageo-2022-0031

Abstract

This article presents a literature review of studies utilising reflectance spectroscopy in geological research. We describe a variety of available spectral libraries together with providing examples of spectral reflectance diagrams, and explain the basic spectral ranges. Geologists can use different methods of data collection, for example, sensors mounted on satellites, airborne [including unmanned aerial vehicle (UAV) platforms] or portable spectroradiometers, and different ways of data processing. Most geological mapping based on reflectance spectroscopy is performed in the Arctic region, where vegetation does not obscure images. However, mineral mapping, studies of hot spring deposits, and rock/soil weathering alterations are also performed in lower latitudes. The development, combination and unifi-cation of all spectral data acquisition methods open up new possibilities for applications in a variety of geological and soil studies.

https://doi.org/10.2478/quageo-2022-0031
PDF

Funding

The spectroradiometer ASD FieldSpec used in weathering studies in front of Hallstätter Glacier in the Alps was provided by MGGP Aero. This research was funded wholly by the National Science Centre, Poland (NCN), grant ‘Micro-weathering and spectral signatures of rock surfaces in glacier forelands’ (2020/39/O/ ST10/01068). For the purpose of Open Access, the authors have applied a CC-BY public copy-right license to any Author Accepted Manuscript (AAM) version arising from this submission.

References

Abrams M.J., Ashley R.P., Rowan L.C., Goetz A.F.H., Kahle A.B., 1977. Mapping of hydrothermal alteration in the cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36 µm. Geology 5(12): 713-718. DOI https://doi.org/10.1130/0091-7613(1977)5<713:MOHAIT>2.0.CO;2

Andongma W.T., Gajere J.N., Amuda A.K., Edmond R.R.D., Faisal M., Yusuf Y.D., 2021. Mapping of hydrothermal alterations related to gold mineralization within parts of the Malumfashi schist belt, North-Western Nigeria, The Egyptian Journal of Remote Sensing and Space Science 24(3): 401-417. DOI https://doi.org/10.1016/j.ejrs.2020.11.001

Baldridge A.M., Hook S.J., Grove C.I., Rivera G., 2009. The ASTER spectral library version 2.0. Remote Sensing of Environment 113(4): 711-715. DOI https://doi.org/10.1016/j.rse.2008.11.007

Baptista G.M.M., Corrêa R.S., dos Santos P.F., Madeira Netto J.S., Meneses P.R., 2011. Use of imaging spectroscopy for mapping and quantifying the weathering degree of tropical soils in Central Brazil. Applied and Environmental Soil Science 641328. DOI https://doi.org/10.1155/2011/641328

Bedini E., 2009. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment 113(6): 1208-1219. DOI https://doi.org/10.1016/j.rse.2009.02.007

Chang C., Lin F., Zhou X., Zhao G., 2020. Hyper-spectral response and estimation model of soil degradation in Kenli County, the Yellow River Delta. PLoS One 15(1): e0227594. DOI https://doi.org/10.1371/journal.pone.0227594

Clark R.N., 1993. SPECtrum Processing Routines user's manual version 3 (program SPECPR) (No. 93-595). US Geological Survey, Reston. DOI https://doi.org/10.3133/ofr93595

Clark R.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual of Remote Sensing 3(11): 3-58.

Clark R.N., King T.V., Klejwa M., Swayze G.A., Vergo N., 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth 95(B8): 12653-12680. DOI https://doi.org/10.1029/JB095iB08p12653

Clark R.N., Roush T.L., 1984. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research: Solid Earth 89(B7): 6329-6340. DOI https://doi.org/10.1029/JB089iB07p06329

Clark R.N., Swayze G.A., Gallagher A., King T.V.V., Calvin W.M., 1993. The U.S. Geological Survey digital spectral library, version 1: 0.2 to 3.0 um. U.S. Geological Survey Open-File Report 93-592. DOI https://doi.org/10.3133/ofr93592

de Jong S.M., 1994. Applications of reflective remote sensing for land degradation studies in a Mediterranean environment. The Royal Dutch Geographical Society, Utrecht University.

Demattê J.A.M., Garcia G.J., 1999. Alteration of soil properties through a weathering sequence as evaluated by spectral reflectance. Soil Science Society of America Journal 63(2): 327-342. DOI https://doi.org/10.2136/sssaj1999.03615995006300020010x

El-Desoky H.M., Tende A.W., Abdel-Rahman A.M., Ene A., Awad H.A., Fahmy W., El-Awny H., Zakaly H.M.H., 2022. Hydrothermal alteration mapping using landsat 8 and ASTER data and geochemical characteristics of Precambrian rocks in the Egyptian shield: A Case Study from Abu Ghalaga, Southeastern Desert, Egypt. Remote Sensing 14(14): 3456. DOI https://doi.org/10.3390/rs14143456

Gaffey M.J., 1976. Spectral reflectance characteristics of the meteorite classe. Journal of Geophysical Research 81(5): 905-920. DOI https://doi.org/10.1029/JB081i005p00905

Goetz A.F., Srivastava V.I.N.A.Y., 1985. Mineralogical mapping in the Cuprite mining district, Nevada. In: Proceedings of the airborne imaging spectrometer data analysis Workshop. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, April 8-10, 1985.

Goetz A.F., Vane G., Solomon J.E., Rock B.N., 1985. Imaging spectrometry for earth remote sensing. Science 228(4704): 1147-1153. DOI https://doi.org/10.1126/science.228.4704.1147

Grove C.I., Hook S.J., Paylorll E.D., 1992. Compilation of laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometers. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena.

Gupta R.P., 2018. Geobotanical guides. In: Gupta R.P. (ed) Remote Sensing Geology. 3rdEdn. Springer-Verlag, Berlin: 347-348.

Heincke B., Jackisch R., Saartenoja A., Salmirinne H., Rapp S., Zimmermann R., Pirttijärvi M., Vest Sörensen E., Gloaguen R., Ek L., Bergström J., Karinen A., Salehi S., Middleton M., 2019. Developing multi-sensor drones for geological mapping and mineral exploration: Setup and first results from the MULSEDRO project. Geological Survey of Denmark and Greenland Bulletin 43: e20194303302. DOI https://doi.org/10.34194/GEUSB-201943-03-02

Hellman M.J., Ramsey M.S., 2004. Analysis of hot springs and associated deposits in YellowstoneNational Park using ASTER and AVIRIS remote sensing. Journal of Volcanology and Geothermal Research 135: 195-219. DOI https://doi.org/10.1016/j.jvolgeores.2003.12.012

Hunt G.R., 1970. Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Modern Geology 1: 283-300.

Hunt G.R., 1977. Spectral signatures of particulate minerals in the visible and near-infrared. Geophysics 42(3): 501-513. DOI https://doi.org/10.1190/1.1440721

Hunt G.R., Salisbury J.W., 1971. Visible and near infra-red spectra of minerals and rocks, II - Carbonates. Modern Geology 2: 23-30.

Hunt G.R., Salisbury J.W., Lenhoff C.J., 1971a. Visible and near infrared spectra of minerals and rocks, III - Oxides and hydroxides. Modern Geology 2: 195-205.

Hunt G.R., Salisbury J.W., Lenhoff C.J., 1971b. Visible and near infrared spectra of minerals and rocks, IV - Sulphides and sulphates. Modern Geology 3: 1-14.

Hunt G.R., Salisbury J.W., Lenhoff C.J., 1972. Visible and near infrared spectra of minerals and rocks, V - Halides, arsenates, vanadates, and borates. Modern Geology 3: 121-132.

Hunt G.R., Salisbury J.W., Lenhoff C.J., 1973. Visible and near infrared spectra of minerals and rocks, VI - Additional silicates. Modern Geology 4: 85-106.

Johnson J.R., Lucey P.G., Horton K.A., Winter E.M., 1998. Infrared measurements of pristine and disturbed soils 1. Spectral contrast differences between field and laboratory data. Remote Sensing of Environments 64: 34-46. DOI https://doi.org/10.1016/S0034-4257(97)00166-1

Kokaly R.F., Clark R.N., Swayze G.A., Livo K.E., Hoefen T.M., Pearson N.C., Wise R.A., Benzel W.M., Lowers H.A., Driscoll R.L., Klein A.J., 2017. USGS spectral library version 7. U.S. Geological Survey Data Series 1035. DOI https://doi.org/10.3133/ds1035

Kortüm G., 1969. Reflectance spectroscopy: Principles, methods, applications. Springer Science & Business Media, Verlag New Your. DOI https://doi.org/10.1007/978-3-642-88071-1_7

Kruse F.A., Lefkoff A.B., 1994. Knowledge-based geologic mapping with imaging spectrometers. Remote Sensing Reviews 8(1-3): 3-28. DOI https://doi.org/10.1080/02757259309532188

Kumar C., Chatterjee S., Oommen T., Guha A., 2020. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in gold-bearing granite-greenstone rocks in Hutti, India. International Journal of Applied Earth Observation and Geoinformation 86: 102006. DOI https://doi.org/10.1016/j.jag.2019.102006

Leone A.P., Sommer S., 2000. Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern Apennines (Italy). Remote Sensing of Environment 72(3): 346-359. DOI https://doi.org/10.1016/S0034-4257(99)00110-8

Liaghat S., Balasundram S.K., 2010. A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences 5(1): 50-55. DOI https://doi.org/10.3844/ajabssp.2010.50.55

Martelet G., Gloaguen E., Døssing A., Silva E.L.S.D., Linde J., Rasmussen T.M., 2021. Airborne/UAV multisensor surveys enhance the geological mapping and 3D model of a pseudo-skarn deposit in Ploumanac'h, French Brittany. Minerals 11: 1259. DOI https://doi.org/10.3390/min11111259

Michalski J.R., Kraft M.D., Sharp T.G., Christensen P.R., 2006. Effects of chemical weathering on infrared spectra of Columbia River Basalt and spectral interpretations of martian alteration. Earth and Planetary Science Letters 248(3-4): 822-829. DOI https://doi.org/10.1016/j.epsl.2006.06.034

Mierczyk M., Zagajewski B., Jarocińska A., Knapik R., 2016. Assessment of imaging spectroscopy for rock identification in the Karkonosze Mountains, Poland. Miscellanea Geographica 20(1): 34-40. DOI https://doi.org/10.1515/mgrsd-2015-0016

Mohanty B., Gupta A., Das B.S., 2016. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 266: 111-119. DOI https://doi.org/10.1016/j.geoderma.2015.11.030

Mulder V.L., Plötze M., de Bruin S., Schaepman M.E., Mavris C., Kokaly R.F., Egli M., 2013. Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1-2.4 μm) and regression tree analysis. Geoderma 207: 279-290. DOI https://doi.org/10.1016/j.geoderma.2013.05.011

Nagano T., Nakashima S., 1989. Study of colors and degrees of weathering of granitic by visible diffuse reflectance spectroscopy. Geochemical Journal 23: 75-83. DOI https://doi.org/10.2343/geochemj.23.75

Pal M., Rasmussen T., Porwal A., 2020. Optimized lithological mapping from multispectral and hyperspectral remote sensing images using fused multi-classifiers. Remote Sensing 12(1): 177. DOI https://doi.org/10.3390/rs12010177

Parish R.M., 2016. Reflectance spectroscopy as a chert sourcing method. Archaeologia Polona 54: 115-128.

Park J., Kim K., 2019. Quantification of rock mass weathering using spectral imaging. The Southern African Institute of Mining and Metallurgy 119(12): 1039-1046.

Peyghambari S., Zhang Y., 2021. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. Journal of Applied Remote Sensing 15(3): 031501. DOI https://doi.org/10.1117/1.JRS.15.031501

Riaza A., Strobl P., Beisl U., Hausold A., Müller A., 1997. Spectral mapping of rock weathering degrees on granite using hyperspectral DAIS 7915 spectrometer data. International Journal of Applied Earth Observation and Geoinformation 3(4): 345-354. DOI https://doi.org/10.1016/S0303-2434(01)85042-X

Rockwell B.W., Hofstra A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data - Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4(1): 218-246. DOI https://doi.org/10.1130/GES00126.1

Rogge D.M., Rivard B., Zhang J., Sanchez A., Harris J., Feng J., 2007. Integration of spatial-spectral information for the improved extraction of endmembers. Remote Sensing of Environment 110(3): 287-303. DOI https://doi.org/10.1016/j.rse.2007.02.019

Salehi S., 2018. Hyperspectral analysis of lithologies in the Arctic in areas with abundant lichen cover. Geological Survey of Denmark and Greenland Bulletin 41: 51-55. DOI https://doi.org/10.34194/geusb.v41.4341

Salehi S., Karami M., Fensholt R., 2016. Identification of a robust lichen index for the deconvolution of lichen and rock mixtures using pattern search algorithm (case study: Greenland). International archives of the photogrammetry. Remote Sensing & Spatial Information Sciences XLI-B7: 973-979. DOI https://doi.org/10.5194/isprsarchives-XLI-B7-973-2016

Salehi S., Mielke C., Pedersen C.B., Olsen S.D., 2019. Comparison of ASTER and Sentinel-2 spaceborne datasets for geological mapping: A case study from North-East Greenland. Geological Survey of Denmark and Greenland Bulletin 43: e2019430205. DOI https://doi.org/10.34194/GEUSB-201943-02-05

Salehi S., Mielke C., Rogass C., 2020. Mapping ultramafic complexes using airborne imaging spectroscopy and spaceborne data in Arctic regions with abundant lichen cover, a case study from the Niaqornarssuit complex in South West Greenland. European Journal of Remote Sensing 53(1): 156-175. DOI https://doi.org/10.1080/22797254.2020.1760733

Salehi S., Rogge D., Rivard B., Heincke B.H., Fensholt R., 2017. Modeling and assessment of wavelength displacements of characteristic absorption features of common rock forming minerals encrusted by lichens. Remote Sensing of Environment 199: 78-92. DOI https://doi.org/10.1016/j.rse.2017.06.044

Salisbury J.W., Hunt G.R., 1974. Meteorite spectra and weathering. Journal of Geophysical Research 79(29): 4439-4441. DOI https://doi.org/10.1029/JB079i029p04439

Schaefer L.N., Kereszturi G., Villeneuve M., Kennedy B., 2021. Determining physical and mechanical volcanic rock properties via reflectance spectroscopy. Journal of Volcanology and Geothermal Research 420: 107393. DOI https://doi.org/10.1016/j.jvolgeores.2021.107393

Tong Q., Zheng L., Xue Y., 1998. Development and application of hyperspectral remote sensing in China. In: K.T. Tsen, H.R. Fetterman (eds.) Proceedings of SPIE, the International Society for Optical Engineering, San Jose, January 28 - 29, 1998. DOI https://doi.org/10.1117/12.577938

Traore M., Wambo J.D.T., Ndepete C.P., Tekin S., Pour A.B., Muslim A.M., 2020. Lithological and alteration mineral mapping for alluvial gold exploration in the south east of Birao area, Central African Republic using Landsat-8 operational land imager (OLI) data. Journal of African Earth Sciences 170: 103933. DOI https://doi.org/10.1016/j.jafrearsci.2020.103933

Van der Meer F., Kopačková V., Koucká L., van der Werff H.M., Van Ruitenbeek F.J., Bakker W.H., 2018. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. International Journal of Applied Earth Observation and Geoinformation 64: 237-248. DOI https://doi.org/10.1016/j.jag.2017.09.008

Varshney P.K., Arora M.K., 2004. Advanced image processing techniques for remotely sensed hyperspectral data. Springer Science & Business Media, Berlin, Heidelberg: 38-39. DOI https://doi.org/10.1007/978-3-662-05605-9

Xie B.S., Zhou S.Y., Wu L.X., 2020. An integrated mineral spectral library using shared data for hyperspectral remote sensing and geological mapping. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 43: 69-75. DOI https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-69-2020

Younis M.T., Gilabert M.A., Melia J., Bastida J., 1997. Weathering process effects on spectral reflectance of rocks in a semi-arid environment. International Journal of Remote Sensing 18(16): 3361-3377. DOI https://doi.org/10.1080/014311697216928

Zhang X., Pazner M., Duke N., 2007. Lithologic and mineral information extraction for gold explorationusing ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Potogrammetry and Remote Sensing 62(4): 271-282. DOI https://doi.org/10.1016/j.isprsjprs.2007.04.004

Zheng G., Ryu D., Jiao C., Xie X., Cui X., Shang G., 2019. Visible and near-infrared reflectance spectroscopy analysis of a coastal soil Chronosequence Guanghui. Remote Sensing 11: 2336. DOI https://doi.org/10.3390/rs11202336

Zhou K.F., Wang S.S., 2017. Spectral properties of weathered and fresh rock surfaces in the Xiemisitai metallogenic belt, NWXinjiang, China. Open Geosciences 9: 322-339. DOI https://doi.org/10.1515/geo-2017-0027