Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951-2020
PDF

Keywords

rapid climate shift
cause of warming up
thermohaline circulation
water balance
Poland
North Atlantic

How to Cite

Marsz, A. A., Sobkowiak, L., Styszyńska, A., & Wrzesiński, D. (2022). Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951-2020. Quaestiones Geographicae, 41(3), 183–206. https://doi.org/10.14746/quageo-2022-0033

Abstract

The paper presents effects of changes in climatic elements in the Greater Poland region (Poland), their causes and consequences for shaping the water balance of this area, copying with the most severe water deficit in Poland. The study period covers 70 years (1951–2020). The research identified an abrupt and significant change in the climate of Greater Poland, which started between 1987 and 1989, concerning not only air temperature but also a wider spectrum of climatic elements. The change in the state of the climate, which covers the entire Atlantic-Eurasian circulation sector, re-sults from a sudden change in the macro-circulation conditions in the middle troposphere (500 hPa). The reason for the change in the mid-tropospheric circulation is an equally abrupt and simultaneous change in the intensity of the ocean heat transport by the North Atlantic thermohaline circulation (NA THC). Climate change observed in Greater Poland is manifested in an increase in sunshine duration (SD) and air temperature, a decrease in relative humidity, a change in the cloud structure, and an increase in the degree of sky coverage. The main, physical reason for an increase in air tempera-ture is a rapid and strong increase in SD in the warm half-years, which began after 1988, and a significant increase in the frequency of positive North Atlantic Oscillation (NAO) phases in winters. The ongoing climate change entails various effects, among which the most important is considered to be hydrological consequences. The water balance of Greater Poland is becoming increasingly unfavourable, mainly as a result of a rapid increase in field evaporation.

https://doi.org/10.14746/quageo-2022-0033
PDF

Funding

The research was carried out under the inter-nal research grant (internal faculty research grant) at the Faculty of Geographical and Geological Sciences of Adam Mickiewicz University in Poznań, Poland. The authors thank the staff of the National Center for Atmospheric Research in Boulder, CO, USA for the material from their website that has been used for the present study.

References

Bartczak A., Głazik R., Tyszkowski S., 2014. Identification and evaluation of the intensity of dry periods in eastern part of Kujawy. Nauka Przyroda Technologia 8(4): 46.

Black J.N., Bonython C.W., Prescott J.A., 1954. Solar radiation and duration on sunshine. Quarterly Journal of the Royal Meteorological Society 80(344): 231-235. DOI https://doi.org/10.1002/qj.49708034411 DOI: https://doi.org/10.1002/qj.49708034411

Blunden J., Arndt D.S. (eds), 2019. State of the climate in 2018. Bulletin of the American Meteorological Society 100(9): 1-305. DOI https://doi.org/10.1175/2019BAMSStateoftheClimate.1. DOI: https://doi.org/10.1175/2019BAMSStateoftheClimate.1

Blunden J., Arndt D.S., Hartfield G. (eds), 2018. State of the Climate in 2017. Bulletin of the American Meteorological Society 99(8): 1-310. DOI https://doi.org/10.1175/2018BAMSStateoftheClimate.1. DOI: https://doi.org/10.1175/2018BAMSStateoftheClimate.1

Boryczka J., 1998. Changes of the earth’s climate. Wydawnictwo Akademickie Dialog, Warszawa.

Boryczka J., Stopa-Boryczka M., Błażek E., Skrzypczuk J., 1999. Cyclical fluctuations of North Atlantic Oscillation (NAO) in years 1825-1997. In: Boryczka J, Stopa-Boryczka M., Błażek E, Skrzypczuk J (eds), Atlas of Interrelationships between Meteorological and Geographical Parameters in Poland. Cyclic Climate Changes in European Cities. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa: 21-54.

Choiński A., Ławniczak A., Ptak M., 2016. Changes in water resources of Polish lakes as influenced by natural and anthropogenic factors. Polish Journal of Environmental Studies 25: 1883-1890. DOI https://doi.org/10.15244/pjoes/62906. DOI: https://doi.org/10.15244/pjoes/62906

Chylek P., Klett J.D., Dubey K., Hengartner N., 2016. The role of Atlantic multi-decadal oscillation in the global mean temperature variability. Climate Dynamics 47: 3271-3279. DOI https://doi.org/10.1007/s00382-016-3025-7. DOI: https://doi.org/10.1007/s00382-016-3025-7

Chylek P., Klett J.D., Lesins G., Dubey M.K., Hengartner N., 2014. The Atlantic multi-decadal oscillation as a dominant factor of oceanic influence on climate. Geophysical Research Letters 41(5): 1689-1697. DOI https://doi.org/10.1002/2014GL059274. DOI: https://doi.org/10.1002/2014GL059274

Ciscar J.-C. (ed.), 2009. Climate change impacts in Europe. Final repot of the PESETA research project. JRC European Commission: 132 pp. DOI https://doi.org/10.2791/32500.

Ciscar J.-C., Iglesias A., Feyen L., Szabó L., van Regemorter D., Amelung B., Nicholls R., Watkiss P., Christensen O.B., Dankers R., Garrote L., Goodess C.M., Hunt A., Morno A., Richards J., 2011. Physical and economic consequences of climate change in Europe. PNAS 108(7): 2678-2683. DOI https://doi.org/10.1073/pnas.1011612108. DOI: https://doi.org/10.1073/pnas.1011612108

Cohen J., Barlow M., 2005. The NAO, the AO, and Global Warming: How Closely Related? Journal of Climate 18(21): 4498-4513. DOI https://doi.org/10.1175/JCLI3530.1. DOI: https://doi.org/10.1175/JCLI3530.1

Compo G., Sardeshmukh P., 2009. Oceanic influences on recent continental warming, Climate Dynamics 32: 333-342. DOI https://doi.org/10.1007/s00382-008-0448-9 DOI: https://doi.org/10.1007/s00382-008-0448-9

Degirmendžić J., Kożuchowski K., 2018. Circulation epochs based on the Vangengeim-Girs large scale patterns (1891-2010). Acta Universitatis Lodziensis, Folia Geographica Physica 17: 7-13. DOI https://doi.org/10.18778/1427-9711.17.01. DOI: https://doi.org/10.18778/1427-9711.17.01

Degirmendžić J., Kożuchowski K., 2019. Variation of macro-circulation forms over the Atlantic-Eurasian temperate zone according to the Vangengeim-Girs classification. International Journal of Climatology 39(13): 4938-4942. DOI https://doi.org/10.1002/joc.6118. DOI: https://doi.org/10.1002/joc.6118

Dübal H.-R., Vahrenholt F., 2021. Radiative energy flux variation from 2001-2020. Atmosphere 12(10), 1297. DOI https://doi.org/10.3390/atmos12101297. DOI: https://doi.org/10.3390/atmos12101297

Dudok de Wit T., Kopp G., Fröhlich C., Schöll M., 2017. Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophysical Research Letters 44(3): 1196-1203. DOI https://doi.org/10.1002/2016GL071866. DOI: https://doi.org/10.1002/2016GL071866

Enfield D.B., Mestas-Nunez A.M., Trimble P.J., 2001. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters 28(10): 2077-2080. DOI: https://doi.org/10.1029/2000GL012745

Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Bartola J.-M., Morgan V.I., 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101: 4115-4128. DOI https://doi.org/10.1029/95JD03410 DOI: https://doi.org/10.1029/95JD03410

Etheridge D.M., Steele L.P., Langenfelds R.L., Francey R.J., Bartola J.-M., Morgan V.I., 1998. Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. In: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA. Online: cidac.ess-dive.lbl/gov/ftp/trends/co2/lawdome. combined.dat (accessed 19 July 2022). DOI https://doi.org/10.3334/CDIAC/atg.011 DOI: https://doi.org/10.3334/CDIAC/atg.011

Farat R., 1996. Climate of Poznań. In: Kurek L. (ed), The natural environment of the city of Poznań, part. 1. TOTAL-DRUK Publishing House, Poznań: 69-78.

Filipiak J., Miętus M., 2009. Spatial and temporal variability of cloudiness in Poland, 1971-2000. International Journal of Climatology 29(9): 1294-1311. DOI https://doi.org/10.1002/joc.1777. DOI: https://doi.org/10.1002/joc.1777

Fortuniak K., 2000. Stochastic and deterministic aspects of variability of the selected climate elements. Acta Universitetas Łodziensis, Folia Geographica Physica 4: 1-139.

Fortuniak K., Kożuchowski K., Żmudzka E., 2001. Trends and periodicity of changes in air temperature in Poland in the second half of 20th century. Przegląd Geofizyczny 46(4): 283-303.

Foster G., Rahmstorf S., 2011. Global temperature evolution 1979-2010. Environmental Research Letters 6(4), 044022. DOI https://doi.org/10.1088/1748-9326/6/4/044022. DOI: https://doi.org/10.1088/1748-9326/6/4/044022

Gawrońska A., 2014. Regional differentiation of natural disaster loans due to drought in Poland in 2007-2012. Roczniki Naukowe Ekonomiki Rolnictwa o Rozwoju Obszarów Wiejskich 101(4): 29-36.

Girs A.A., 1964. On the creation of a single classification of the northern hemisphere. Meteorologya i Gidrologiya 4: 43-47.

Girs A.A., 1971. Long-term atmospheric circulation variations and long-range hydrometeorological forecasts. Girometeoizdat, Leningrad.

Grossmann I., Klotzbach P.J., 2009. A review of North Atlantic modes of natural variability and their driving mechanisms. Journal of Geophysical Research 114, D24107. DOI https://doi.org/10.1029/2009JD012728. DOI: https://doi.org/10.1029/2009JD012728

Hansen J., Sato M., Ruedy R., Kharecha P., Lacis A., Miller R., Nazarenko L., Lo K., Schmidt G.A., Russell G., Aleinov L., Bauer S., Baum E., Cairns B., Canuto V., Chandler M., Cheng Y., Cohen A., Del Genio A., Faluvegi G., Fleming E., Friend A., Hall T., Jackman C., Jonas J., Kelley M., Kinag N.Y., Koch D., Labow G., Lerner J., Menon S., Novakov T., Oinas V., Perlwitz Ja., Perlwitz Ju., Rind D., Romanou A., Schmunk R., Shindell D., Stone P., Sun S., Streets D., Tausnev N., Thresher D., Unger N., Yao M., Zhang S., 2007. Dangerous human-made interference with climate: A GISS modelE study. Atmospheric Chemistry and Physics 7(9): 2287-2312. DOI https://doi.org/10.5194/acp-7-2287-2007 DOI: https://doi.org/10.5194/acp-7-2287-2007

Huang B., Thorne P.W., Banzon V.F., Boyer T., Chepurin G., Lawrimore J.H., Menne M.J., Smith T.M., Vose R.S., Zhang, H.-M., 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv.5): Upgrades, validations and intercomparisons. Journal of Climate 30(20): 8179--8205. DOI https://doi.org/10.1175/JCLI-D-16-0836.1. DOI: https://doi.org/10.1175/JCLI-D-16-0836.1

Hurrell J.W., 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269: 90-92. DOI: https://doi.org/10.1126/science.269.5224.676

Iglesias A., Garrote L., 2015. Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management 155: 113-124. DOI https://doi.org/10.1016/j.agwat.2015.03.014. DOI: https://doi.org/10.1016/j.agwat.2015.03.014

IPCC 2001. TAR climate change 2001: The scientific basis. Ch. 6: Radiative forcing of climate change. Cambridge University Press, Cambridge: 349-416.

IPCC 2007a. Climate change 2007: the Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.

IPCC 2007b. Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.

IPCC 2014. AR5 synthesis report: Climate change 2014. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva.

Jokiel P., Tomalski P., 2017. Forms of river outflow and their spatial differentiation. In: Jokiel P., Marszalewski W., Pociask-Karteczka J. (eds), Hydrology of Poland. Wydawnictwo Naukowe PWN, Warszawa: 160-167.

Karolczak E., 2012. Influence of the synoptic conditions on thermal anomalies in Poznań 1971-2008. Badania Fizjograficzne ser. A. 3(A63): 209-229. DOI https://doi.org/10.2478/v10116-012-0011-6.

Keeling R.F., Piper S.C., Bollenbacher A.F., Walker J.S., 2009. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA. DOI https://doi.org/10.3334/CDIAC/atg.035. DOI: https://doi.org/10.3334/CDIAC/atg.012

Kerr R.A., 2000. A North Atlantic climate pacemaker for the centuries. Science 288(5473): 1984-1986. DOI https://doi.org/10.1126/science.288.5473.1984 DOI: https://doi.org/10.1126/science.288.5473.1984

Kędziora A., 1999. Fundamentals of agro-meteorology. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.

Kędziora A., 2008. Water balance of Konin strip mine landscape in changing climatic conditions. Roczniki Gleboznawcze 59(2): 104-118.

Kolendowicz L., Czernecki B., Półrolniczak M., Taszarek M., Tomczyk A.M., Szyga-Pluta K., 2019. Homogenization of air temperature and its long-term trends in Poznań (Poland) for the period 1848-2016. Theoretical and Applied Climatology 136: 1357-1370. DOI https://doi.org/10.1007/s00704-018-2560-z. DOI: https://doi.org/10.1007/s00704-018-2560-z

Kopp G., 2022. Historical TSI reconstruction. Online: https://spot.colorado.edu/~koppg/TSI/index.html (accessed 14 July 2022).

Kopp G., Lean J.L., 2011. A new lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters 38: L01706. DOI https://doi.org/10.1029/2010GL045777. DOI: https://doi.org/10.1029/2010GL045777

Kożuchowski K., 2011. Climate of Poland. A new insight. Wydawnictwo Naukowe PWN, Warszawa.

Kundzewicz Z.W., 2011. Climate changes, their reasons and effects – Observations and projections. Landform Analysis 15: 39-49.

Kundzewicz Z.W., Pinskwar I., Koustoyiannis D., 2020. Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. Science of Total Environment 747, 141256. DOI https://doi.org/10.1016/j.scitotenv.2020.141256. DOI: https://doi.org/10.1016/j.scitotenv.2020.141256

Kushnir Y., 1994. Interdecadal variations in the North Atlantic Sea surface temperature and associated atmospheric conditions. Journal of Climate 7(1): 141-157. DOI https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2. DOI: https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2

Lacis A.A., Schmidt G.A., Rind D., Ruedy R.A., 2010. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 330: 356-359. DOI https://doi.org/10.1126/scence.1190653. DOI: https://doi.org/10.1126/science.1190653

Lean J.L., Rind D.H., 2008. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters 35, L18701. DOI https://doi.org/10.1029/2008GL034864. DOI: https://doi.org/10.1029/2008GL034864

Lenssen N., Schmidt G., Hansen J., Menne M., Persin A., Ruedy R., Zyss D., 2019. Improvements in the GISSTEMP uncertainty model. Journal of Geophysical Research. Atmosphere 124(12): 6307-6326. DOI https://doi.org/10.1029/2018JD029522. DOI: https://doi.org/10.1029/2018JD029522

Mann M.E., Bradley R.S., Hughest M.K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392: 779-787. DOI https://doi.org/10.1038/33859 DOI: https://doi.org/10.1038/33859

Marsz A.A., 2015. Thermohaline circulation in the North Atlantic and the air temperature in Poland (1961-2010). Przegląd Geofizyczny 60(3-4): 109-131.

Marsz A.A., Matuszko D., Styszyńska A., 2022. The thermal state of the North Atlantic and macro-circulation conditions in the Atlantic-European sector, and changes in sunshine duration in Central Europe. International Journal of Climatology 42(2): 748-761. DOI https://doi.org/10.1002/joc.7270. DOI: https://doi.org/10.1002/joc.7270

Marsz A.A., Styszyńska A., 2001. The North Atlantic Oscillation and the air temperature over Poland; Wydawnictwo Uczelniane Wyższej Szkoły Morskiej, Gdynia.

Marsz A.A., Styszyńska, A., 2019. The scale and causes of changes in the temperature of the warmest months of the year over the area of Poland after 1988. In: Chojnacka-Ozga L., Lorenc H. (eds), Contemporary problems of Polish climate. Wydawnictwo IMGW-PIB, Warszawa: 9-26.

Matuszko D., Węglarczyk S., 2018. Long-term variability of the cloud amount and cloud generation and their relationship with circulation (Kraków, Poland). International Journal of Climatology 38(51): 1205-1220. DOI https://doi.org/10.1002/joc.887. DOI: https://doi.org/10.1002/joc.5445

Michalczyk Z., 2017. Average runoff, its variability over time and spatial differentiation. In: Jokiel P., Marszalewski W., Pociask-Karteczka J. (eds), Hydrology of Poland. Wydawnictwo Naukowe PWN, Warszawa: 153-160.

Monin A.S., 1982. An introduction to the theory of climate. Gidrometoizdat, Leningrad.

NASA [National Aeronautics and Space Administration, Goddard Institute for Space Studies], 2022. GISS Surface Temperature Analysis (GISTEMP v.4). Online: data.giss.nasa.gov/gistemp/ (accessed 14 July 2022).

NCAR [National Center for Atmospheric Research] Staff (eds), 2022. The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). Online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (last modified 17 April 2022, accessed 14 July 2022).

Okołowicz W., 1976. General climatology. Wydawnictwo Naukowe PWN, Warszawa.

Parker A., 2016. Atlantic meridional overturning circulation is stable under global warming. PNAS 113(20): E2760-E2761. DOI https://doi.org/10.73/pnas.1604187113. DOI: https://doi.org/10.1073/pnas.1604187113

Piniewski M., Marcinkowski P., Kundzewicz Z.W., 2018. Trend detection in river flow indices in Poland. Acta Geophysica 66: 347-360. DOI https://doi.org/10.1007/s11600-018-0116-3 DOI: https://doi.org/10.1007/s11600-018-0116-3

Pohlmann H., Sienz F., Latif M., 2006. Influence of the multidecadal atlantic meridional overturning circulation variability on European climate. Journal of Climate 19 (23 – Special Section: Climate Variability and Predictability Study (CLIVAR): Atlantic Climate Predictability): 6062-6067. DOI https://doi.org/10.1175/JCLI3941.1. DOI: https://doi.org/10.1175/JCLI3941.1

Półrolniczak M., Kolendowicz L., Majkowska-Juśkowiak A., 2019. The state of Poznań climate research with particular focus on the air temperature and urban heat island phenomenon. Acta Geographica Lodziensia 108: 79-92. DOI https://doi.org/10.24485/AGL/2019/108/6. DOI: https://doi.org/10.26485/AGL/2019/108/6

Ptak M., Nowak B., 2019. Natural and anthropogenic conditions of water level fluctuations in lakes – Lake Powidzkie case study (Central-Western Poland). Journal of Water and Land Development 40(I-III): 13-25. DOI https://doi.org/10.2478/jwld-2019-0002. DOI: https://doi.org/10.2478/jwld-2019-0002

Rannow, S., Neubert M. (eds.), 2009. Managing protected areas in Central and Eastern Europe under climate change. Springer, Dordrecht, Heidelberg, New York, London.

Robson J., Sutton R., Lohmann K., Smith D., Palmer M.D., 2012. Causes of the rapid warming the North Atlantic Ocean in the mid-1990s. Journal of Climate 25(12): 4116-4134. DOI https://doi.org/10.1175/JCLI-D-11-00443.1. DOI: https://doi.org/10.1175/JCLI-D-11-00443.1

Savichev A.I., Mironicheva N.P., Cepelev V.Y., 2015. Atmospheric circulation characteristics of the northern hemi-sphere of the Atlantic-Eurasian sector for last decades. Uchenye Zapiski Rossijskogo Gosudarstvennogo Gidrometeorologicheskogo Universiteta 39: 120-131.

Semenov V.A., Latif M., Jungclaus J.H., Park W., 2008. Is the observed NAO variability during the instrumental record unusual? Geophysical Research Letters 35(11), L11701. DOI https://doi.org/10.1029/2008GL033273. DOI: https://doi.org/10.1029/2008GL033273

Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J., 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate 21(10): 2283-2296. DOI https://doi.org/10.1175/2007JCLI2100.1. DOI: https://doi.org/10.1175/2007JCLI2100.1

Stanhill G., Achiman O., Rosa R., Cohen S., 2014. The cause of solar dimming and brightening at the Earth’s surface during the last half century: Evidence from measurements of sunshine duration. Geophysical Research Letters 119(18): 10.902-10.911. DOI https://doi.org/10.1002/2013JD021308. DOI: https://doi.org/10.1002/2013JD021308

Stott P.A., Gillet N.P., Hegerl G.C., Karoly D.J., Stone D.A., Zhang X., Zwiers F., 2010. Detection and attribution of climate change: a regional perspective. WIREs Climate Change 1(2): 192-211. DOI https://doi.org/10.1002/wcc.34. DOI: https://doi.org/10.1002/wcc.34

Sutton R.T., Dong B., 2012. Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geoscience 5: 788-792. DOI https://doi.org/10.1038/NGEO1595. DOI: https://doi.org/10.1038/ngeo1595

Sutton R.T., Hodson D.L.R., 2005. Atlantic Ocean forcing of North American and European summer climate. Science 309(5731): 115-118. DOI https://doi.org/10.1126/science.1109496. DOI: https://doi.org/10.1126/science.1109496

Szyga-Pluta, K. Półrolniczak M., 2012. Interdiurnal air-pressure changes in Poznań as set against GWL (Grosswetter-lagen) circulation types). Przegląd Geograficzny 84(3): 423-435 (In Polish). DOI https://doi.org/10.7163/PrzG.2012.3.6. DOI: https://doi.org/10.7163/PrzG.2012.3.6

The BAAC II Author Team, 2015. Second assessment of climate change for the Baltic Sea Basin. Springer, REGCLIMATE series. DOI https://doi.org/10.1007/978-3-319-16006-1. DOI: https://doi.org/10.1007/978-3-319-16006-1

van der Werf G.R., Dolman A.J., 2014. Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving anthropogenic warming rates from the instrumental temperature record. Earth System Dynamics 5(2): 375-382. DOI https://doi.org/10.5194/esd-5-375-2014. DOI: https://doi.org/10.5194/esd-5-375-2014

Wangengejm G.Ya., 1952. Fundamentals of macrocirculation method for long-range weather forecasting for the Arctic. Trudy 1952, AANII 34: 314 pp.

Wibig J., 2008. Cloudiness variations in Łódź in the second half of the 20th century. International Journal of Climatology 28: 479-491. DOI https://doi.org/10.1002/joc.1544. DOI: https://doi.org/10.1002/joc.1544

Wild M., 2012. Enlightening global dimming and brightening. Bulletin of the American Meteorological Society 93(1): 27-37. DOI https://doi.org/10.1175/BAMS-D-11-00074. DOI: https://doi.org/10.1175/BAMS-D-11-00074.1

Wild M., Gilgen H., Roesch A., Ohmura A., Long C.N., Dutton E.G., Forgan B., Kallis A., Russak V., Tsvetkov A., 2005. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308: 847-850. DOI https://doi.org/10.1126/scence.1103215. DOI: https://doi.org/10.1126/science.1103215

Wild M., Ohmura A., and Makowski K., 2007. Impact of global dimming and brightening on global warming. Geophysical Research Letters 34: L04702. DOI https://doi.org/10.1029/2006GL028031. DOI: https://doi.org/10.1029/2006GL028031

Wills R.C., Schneider T., Wallace J.M., Battisti D.S., Hartmann D.L., 2018. Disentangling global warming, multidecadal variability, and El Niño in Pacific temperatures. Geophysical Research Letters 45(5): 2487-2496. DOI https://doi.org/10.1002/2017GL076327. DOI: https://doi.org/10.1002/2017GL076327

Woś A., 1994. Climate of the Greater Poland Lowlands. Wydawnictwo Naukowe UAM, Poznań.

Wójcik I., Doroszewski A., Wróblewska E., Koza P., 2019. Agricultural drought in the cultivation of spring cereals in Poland in 2006-2017. Woda-Środowisko-Obszary Wiejskie 19(1): 77-95.

Wrzesiński D., 2009. Tendencies of changes in the discharge of Polish rivers in the second half of the 20th century. Badania Fizjograficzne nad Polską Zachodnią 60: 147-162.

Wrzesiński D., 2021. Flow regime patterns and their changes. In: Zeleňáková M., Kubiak-Wójcicka K., Negm A.M. (eds), Management of water resources in Poland. Springer Nature: 163-180. DOI https://doi.org/10.1007/978-3-030-61965-7_9. DOI: https://doi.org/10.1007/978-3-030-61965-7_9

Wrzesiński D., Marsz A.A., Styszyńska A., Sobkowiak L., 2019. Effect of the North Atlantic thermohaline circulation in changes in climate conditions and river flow in Poland. Water 11: 1622. DOI https://doi.org/10.3390/w11081622. DOI: https://doi.org/10.3390/w11081622

Wrzesiński D., Perz A., 2019a. River runoff and its structure. In: Choiński A. (ed), Waters of the Greater Poland Region. Wydawnictwo Naukowe UAM, Poznań, Poland: 114-126.

Wrzesiński D., Perz A., 2019b. Trends in changes in river runoff. In: Choiński A. (ed), Waters of the Greater Poland Region. Wydawnictwo Naukowe UAM, Poznań: 126-135.

Wrzesiński D., Ptak M., 2016. Water level changes in Polish lakes during 1976-2010. Journal of Geographical Sciences 26(1): 83-101. DOI https://doi.org/10.1007/s11442-016-1256-5. DOI: https://doi.org/10.1007/s11442-016-1256-5

Wrzesiński D., Ptak M., 2017. An investigation of water level fluctuations in Polish lakes in various phases of the winter North Atlantic Oscillation. Geology, Geophysics and Environment 43(2): 151-163. DOI https://doi.org/10.7494/geol.2017. 43.2.151. DOI: https://doi.org/10.7494/geol.2017.43.2.151

Wrzesiński D., Ptak M., Plewa K., 2018. Effect of the North Atlantic Oscillation on water level fluctuations in lakes of northern Poland. Geographia Polonica 91(2): 243-259. DOI https://doi.org/10.7163/GPol.0119. DOI: https://doi.org/10.7163/GPol.0119

Wrzesiński D., Sobkowiak L., 2018. Detection of changes in flow regime of rivers in Poland. Journal of Hydrology and Hydromechanics 66(1): 55-64. DOI https://doi.org/10.1515/johh-2017-0045. DOI: https://doi.org/10.1515/johh-2017-0045

Zhou J., Tung K.K., 2013. Deducing multidecadal anthropogenic warming trend using multiple regression analysis, Journal of the Atmospheric Sciences 70: 3-8. DOI https://doi.org/10.1175/JAS-D-12-0208.1. DOI: https://doi.org/10.1175/JAS-D-12-0208.1

Żmudzka E., 2007. Variability of cloudiness over Poland and its circulation-related conditioning (1951-2000). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.