Vertical variability of night sky brightness in urbanised areas
PDF

Keywords

light pollution
smartcity
UAV
urban area
vertical measurement

How to Cite

Karpińska, D., & Kunz, M. (2023). Vertical variability of night sky brightness in urbanised areas. Quaestiones Geographicae, 42(1), 5–14. https://doi.org/10.14746/quageo-2023-0001

Abstract

Excessive amounts of artificial light emitted into the lower atmosphere at night have already become an everyday feature of modern urban landscapes, and gradually also a phenomenon associated with areas located out- side large human settlements. Urban islands of light have been the subject of targeted research conducted for several decades by scientists representing miscellaneous fields of science. In Toruń, regular research on the phenomenon of light smog has been carried out for several years at a number of sites located throughout the city. Recently, research has been started on the variability of the night sky brightness in a vertical gradient. To this end, repeatable measurements were made at specific altitudes at two locations in the city using a drone with an automatic light metre on board. The values of the night sky brightness thus obtained allowed us to determine its variability in the vertical gradient up to an altitude of 120 m, as well as to test the possibility of using drones in targeted studies of the light pollution phenomenon.

https://doi.org/10.14746/quageo-2023-0001
PDF

References

Aubé M., 2007. Proceedings of ‘starlight, a common heritage’ UNESCO conference. In: Marin C., Jafari J. (eds), La Palma: 351.

Aubé M., Marseille C., Farkouh A., Dufour A., Simoneau A., Zamorano J., Roby J., Tapia Ayuga C.E., 2020. Mapping the melatonin suppression, star light and induced photosynthesis indices with the LANcube measurement. Synthetic photometry. Remote Sensing 12. DOI: https://doi.org/10.20944/preprints202011.0347.v1

Bará S., Marco E., Ribas S.J., Gil M.G., Miguel A.S., Zamorano J., 2021. Direct assessment of the sensitivity drift of SQM sensors installed outdoors. International Journal of Sustainable Lighting IJSL 21(1): 1–6. DOI: https://doi.org/10.26607/ijsl.v23i1.109

Bará S., Tapia C.E., Zamorano J., 2019. Absolute radiometric calibration of TESS-W and SQM night sky brightness sensors. Sensors 19(6): 1336. DOI: https://doi.org/10.3390/s19061336

Bouroussis C.A., Topalis F.V., 2020. Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer. Journal of Quantitative Spectroscopy & Radiative Transfer 259: 107–155. DOI: https://doi.org/10.1016/j.jqsrt.2020.107155

Connors B.M., McConnell A., Routledge R., 2010. Effect of artificial light on marine invertebrate and fish abundance in an area of salmon farming. Marine Ecology Progress 419: 147–156. DOI: https://doi.org/10.3354/meps08822

Den Outer P., Lolkema D., Haaima M., Van der Hoff R., Spoelstra H., Schmidt W., 2011. Intercomparisons of nine sky brightness detectors. Sensors 11(10): 9603–9612. DOI: https://doi.org/10.3390/s111009603

Den Outer P., Lolkema D., Haaima M., Van der Hoff R., Spoelstra H., Schmidt W., 2015. Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network. Sensors 15(4): 9466–9480. DOI: https://doi.org/10.3390/s150409466

Depledge M., Godard-Codding C.A.J., Bowen R.E., 2010. Light pollution in the sea. Marine Pollution Bulletin 60(9): 1383–1385. DOI: https://doi.org/10.1016/j.marpolbul.2010.08.002

Falchi F., Cinzano P., Duriscoe D., Kyba C.C.M., Elvidge C.D., Baugh K., Portnov B.A., Rybnikova N.A., Furgoni R., 2016. The new world atlas of artificial night sky brightness. Science Advances 2. DOI: https://doi.org/10.1126/sciadv.1600377

Falchi F., Cinzano P., Elvidge C., Keith D., Haim A., 2011. Limiting the impact of light pollution on human health, environment and stellar visibility. Journal of Environmental Management 92: 2714–2722. DOI: https://doi.org/10.1016/j.jenvman.2011.06.029

Fiorentin P., Bettanini C., Bogoni D., 2019. Calibration of an autonomous instrument for monitoring light pollution from drones. Sensors 19: 5091. DOI: https://doi.org/10.3390/s19235091

Garcia-Saenz A., Sanchez de Miguel A., Espinosa A., Crespo A., Aragonés N., Llorca J., Amiano P., Martín V., Guevara M., Capelo R., Tardón A., Peiró R., Jiménez-Moleón J., Roca Barcelo A., Perez-Gomez B., Dierssen-Sotos T., Fernández T., Moreno-Iribas C., Moreno V., Kogevinas M., 2018. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (mcc-spain study). Environmental Health Perspectives 126. DOI: https://doi.org/10.1289/EHP1837

Hänel A., Posch T., Ribas S.J., Aubé M., Duriscoe D., Jechow A., Kolláth Z., Lolkema D.E., Moore C., Schmidt N., Spoelstra H., Wuchterl G., Kyba C.C.M., 2017. Measuring night sky brightness: Methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer 205: 278–290. DOI: https://doi.org/10.1016/j.jqsrt.2017.09.008

Jechow A., Kyba C.C.M., Kolláth Z., Lerner A., Hänel A., Shashar N., Hölker F., 2017. Measuring light pollution with fisheye lens imagery from a moving boat, a proof of concept. International Journal of Sustainable Lighting 36(1): 15–255. DOI: https://doi.org/10.26607/ijsl.v19i1.62

Jechow A., Ribas S.J., Canal-Domingo R., Holker F., Kolláth Z., Kyba C.C.M., 2018. Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. Journal of Quantitative Spectroscopy and Radiative Transfer 209: 212–223. DOI: https://doi.org/10.1016/j.jqsrt.2018.01.032

Jones J., Francis C.M., 2003. The effects of light characteristics on avian mortality at lighthouses. Journal of Avian Biology 34: 328–333. DOI: https://doi.org/10.1111/j.0908-8857.2003.03183.x

Karpińska D., Kunz M., 2019. Light pollution in the night sky of Toruń in the summer season. Bulletin of Geography. Physical Geography Series 17: 91–100. DOI: https://doi.org/10.2478/bgeo-2019-0017

Karpińska D., Kunz M., 2020. Analysis of light pollution of the night sky in Toruń (Poland). Civil and Environmental Engineering Reports 30(4): 155–172. DOI: https://doi.org/10.2478/ceer-2020-0057

Karpińska D., Kunz M., 2021a. Analysis of the visibility and signal strength of the LoRaWAN network in an urbanized area on the example of the Bielany campus of the Nicolaus Copernicus University in Toruń. In: Book of Abstracts, Third World Conference of the Society for Urban Ecology. Fundacja UAM w Poznaniu. Poznań: 143–144. DOI: https://doi.org/10.2478/bog-2021-0039

Karpińska D., Kunz M., 2021b. Rekonstrukcja zasięgu widoczności sieci LoRaWAN na terenie kampusu UMK w Toruniu (Reconstruction of the visibility range of the LoRaWAN network on the campus of the Nicolaus Copernicus University in Toruń). In: Młynarczyk A. (ed.), Środowisko przyrodnicze, jako obszar badań. Bogucki Wydawnictwo Naukowe: Poznań: 47–60.

Kocifaj M., 2009. Light pollution model for cloudy and cloudless night skies with ground-based light sources: Errata. Applied Optics 48: 4650–4650. DOI: https://doi.org/10.1364/AO.48.004650

Kocifaj M., Bará S., 2020. Nighttime monitoring of the aerosol content of the lower atmosphere by differential photometry of the anthropogenic skyglow. Monthly Notices of the Royal Astronomical Society: Letters 500: 47–51. DOI: https://doi.org/10.1093/mnrasl/slaa181

Kolláth Z., 2010. Measuring and modelling light pollution at the Zselic Starry Sky Park. Journal of Physics Conference Series 218,1, 012001. DOI: https://doi.org/10.1088/1742-6596/218/1/012001

Kołomański S., 2015. Zanieczyszczenie światłem i ciemność (Light pollution and darkness). In: Wiśniewska M.R., Tomasik K. (ed.), Przejdź na ciemną stronę nocy. Środowiskowe i społeczne skutki zanieczyszczenia światłem. Wyd. Uniwersytetu Warszawskiego. Warszawa: 29–46. DOI: https://doi.org/10.31338/uw.9788323514138.pp.29-46

Kołomański S., Wiernasz A., Borodacz K., Białek R., Mikołajczyk P., 2019. ALPS – stacje obserwacyjne zanieczyszczenia światłem (ALPS – light pollution observation stations). In: Kotarba A. (ed.), Zanieczyszczenie światłem. Źródła, obserwacje, skutki. Centrum Badań Kosmicznych PAN. Warszawa: 153–166.

Kunz M., 2015. Nowoczesne metody i narzędzia telegeoinformatyczne służące pozyskiwaniu informacji geograficznej (Modern tele-information methods and tools for obtaining geographic information). In: Kunz M., Nienartowicz A. (eds), Systemy informacji geograficznej w zarządzaniu obszarami chronionymi – od teorii do praktyki. Wyd. FUH Daniel. Sępólno Kraj.: 85–96.

Kyba C.C.M., Kuester T., Sánchez De Miguel A.K., Jechow A., Hölker F., Bennie J., Elvidge C.D., Gaston K.J., Guanter L., 2017. Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances 3(11). DOI: https://doi.org/10.1126/sciadv.1701528

Linares H., Masana E., Ribas S.J., Aubé M., Simoneau A., Bará S., 2020. Night sky brightness simulation over Montsec protected area. Journal of Quantitative Spectroscopy and Radiative Transfer 249. DOI: https://doi.org/10.1016/j.jqsrt.2020.106990

Longcore T., Rich C., DelBusso L., 2017. Artificial Night Lighting and Protected Lands; Natural Resource Report NPS/NRSS/NSNS/NRR—2017/1493.

Navara K.J., Nelson R.J., 2007. The dark side of light at night: Physiological, epidemiological, and ecological consequences. Journal of Pineal Research 43(3): 215–224. DOI: https://doi.org/10.1111/j.1600-079X.2007.00473.x

Para A.K., Para A., 2013. Świadomość skażenia otoczenia człowieka radonem (Awareness of radon contamination of the human environment). Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska 59: 88–97.

Pun C.S.J., So C.W., Leung W.Y., Wong C.F., 2013. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. Journal of Quantitative Spectroscopy and Radiative Transfer 139: 90–108. DOI: https://doi.org/10.1016/j.jqsrt.2013.12.014

Qadri H., Bhat R.A., Mehmood M.A., Dar G.H., 2020. Fresh water pollution dynamics and remediation. Springer. Singapore. DOI: https://doi.org/10.1007/978-981-13-8277-2

Ribas S., Torra J., Figueras F., Paricio S., Canal-Domingo R., 2016. How clouds are amplifying (or not) the effects of ALAN. International Journal of Sustainable Lighting 18. DOI: https://doi.org/10.26607/ijsl.v18i0.19

Ribas S.J., 2015. Caracteritzacio de la Contaminacio Lumnica en Zones Protegides i Urbanes. PhD thesis. Universitat de Barcelona, Barcelona.

Ściężor T., 2015. Określenie charakteru zmian jasności nocnego nieba w Polsce w latach 1994–2009 na podstawie amatorskich obserwacji komet (Determining the nature of changes in the brightness of the night sky in Poland in the years 1994–2009 on the basis of amateur comet observations). In: Roge-Wiśniewska M., Tomasik K., (eds), Przejdź na ciemną stronę nocy. Środowiskowe i społeczne skutki zanieczyszczenia światłem. Wyd. Uniwersytetu Warszawskiego. Warszawa: 61–80. DOI: https://doi.org/10.31338/uw.9788323514138.pp.61-80

Ściężor T., 2020. The impact of clouds on the brightness of the night sky. Journal of Quantum Spectroscopy and Radiative Transfer 247. DOI: https://doi.org/10.1016/j.jqsrt.2020.106962

Ściężor T., Kubala M., Kaszowski W., Dworak T.Z., 2010. Zanieczyszczenie świetlne nocnego nieba w obszarze aglomeracji krakowskiej (Light pollution of the night sky in the area of the Kraków agglomeration). Analiza pomiarów sztucznej poświaty niebieskiej. Wyd. Politechniki Krakowskiej. Kraków.

Ściężor T., Metody pomiaru jasności nocnego nieba (Methods of measuring the brightness of the night sky). Online: http://lightpollution.pk.edu.pl/SOCN/metody.php (accessed 10 December 2021).

Skwarło-Sońta K., 2014. Melatonina: hormon snu czy hormon ciemności? Kosmos. Problemy Nauk Biologicznych 63(2): 223–231.

Stevens R.G., 2009. Light-at-night, circadian disruption and breast cancer: Assessment of existing evidence. International Journal of Epidemiology 38: 1–8. DOI: https://doi.org/10.1093/ije/dyp178

Wang L.K., Pereira N.C., Hung Y.T., 2004. Air pollution control engineering. In:Handbook of environmental engineering, Vol. 1. Humana Totowa, NJ. New York..

Woźny A., Dobosz M., Pacana A., 2014. Wpływ hałasu na jakość pracy (The influence of noise on the quality of work). Humanities and Social Sciences 21(2): 251–258. DOI: https://doi.org/10.7862/rz.2014.hss.31

Wyszkowski M., Wyszkowska J., 2007. Zanieczyszczenie gleby kadmem a zawartość makropierwiastków w roślinach (Soil contamination with cadmium and the content of macroelements in plants). Ochrona Środowiska i Zasobów Naturalnych 3: 231–235.