Abstract
The aim of the study is to characterise the changes in the proportion of impervious surfaces (ISs) in Poland and their impact on changes in temperature, air humidity, and cloud cover. The results of satellite image classification from 1990, 2000, 2010 and 2020, as well as meteorological data from the period 1981–2020 for the warm half of the year, were used. An analysis was performed making it possible to compare the changes in the proportion of ISs in 3 decades, i.e. 1991–2000, 2001–2010 and 2011–2020. In Poland, in the years 1991–2020, the total area of ISs increased by approxi- mately 30%. At the same time, statistically significant positive trends in maximum temperature are visible throughout Poland, ranging from 0.48°C per 10 years to >0.90°C per 10 years. Trends in the magnitude of low-level cloud cover are negative throughout Poland and range from −2.7% to −2.3% per 10 years. The frequency of stratiform clouds is decreasing, while that of mid-level Cirrus and Cumulus clouds is increasing. The results show a relationship between the increase in ISs in Polish cities and changes in meteorological elements in their area and in the immediate vicinity, which were most pronounced in the first decade of the 21st century.
References
Abakumova G., Feigelson E., Russak V., Stadnik V., 1996. Evaluation of long-term changes in radiation, cloudiness, and surface temperature on the territory of the former Soviet Union. Journal of Climate 9(6): 1319–1327. DOI: https://doi.org/10.1175/1520-0442(1996)009<1319:EOLTCI>2.0.CO;2
Akbari H., Rose L., 2008. Urban surfaces and heat Island mitigation potentials. Journal of Human-Environment System 11(2): 85–101. DOI: https://doi.org/10.1618/jhes.11.85
Angel S., Parent J., Civco D., Blei A., Potere D., 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning 75(2): 53–107. DOI: https://doi.org/10.1016/j.progress.2011.04.001
Arnfield A., 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat Island. International Journal of Climatology 23(1): 1–26. DOI: https://doi.org/10.1002/joc.859
Arnold C., Gibbons C., 1996. Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association 62(2): 243–258. DOI: https://doi.org/10.1080/01944369608975688
Ban Y., (ed.), 2016. Multitemporal remote sensing: Methods and applications. Springer. DOI: https://doi.org/10.1007/978-3-319-47037-5
Bartoszek K., Kaszewski B.M., 2022. Changes in the frequency and temperature of air masses over east-central Europe. International Journal of Climatology: 1–18. DOI: https://doi.org/10.1002/joc.7704
Bartoszek K., Matuszko D., 2021. The influence of atmospheric circulation over Central Europe on the long-term variability of sunshine duration and air temperature in Poland. Atmospheric Research 251:105427. DOI: https://doi.org/10.1016/j.atmosres.2020.105427
Bartoszek K., Matuszko D., Węglarczyk S., 2021. Trends in sunshine duration in Poland (1971–2018). International Journal of Climatology 41(1): 73–91. DOI: https://doi.org/10.1002/joc.6609
Chen J., 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena 69(1): 1–15. DOI: https://doi.org/10.1016/j.catena.2006.04.019
Fazal S., 2000. Urban expansion and loss of agricultural land – A GIS based study of Saharanpur City, India. Environment and Urbanization 12(2): 133–149. DOI: https://doi.org/10.1177/095624780001200211
Friedl M., Davis F., Michaelsen J., Moritz M., 1995. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE. Remote Sensing of Environment 54(3): 233–246. DOI: https://doi.org/10.1016/0034-4257(95)00156-5
Gao B., 1996. NDWI–A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257–266. DOI: https://doi.org/10.1016/S0034-4257(96)00067-3
Gardi C., Panagos P., Van Liedekerke M., Bosco C., De Brogniez D., 2014. Land take and food security: Assessment of land take on the agricultural production in Europe. Journal of Environmental Planning and Management 58(5): 898–912. DOI: https://doi.org/10.1080/09640568.2014.899490
Gillett N., Arora V., Flato G., Scinocca J., von Salzen K., 2012. Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophysical Research Letters 39(1): L01704. DOI: https://doi.org/10.1029/2011GL050226
Goode P., Pallé E., Shoumko A., Shoumko S., Montañes-Rodriguez P., Koonin S., 2021. Earth’s albedo 1998–2017 as measured from earthshine. Geophysical Research Letters 48(17): e2021GL094888. DOI: https://doi.org/10.1029/2021GL094888
GUGiK [Head Office of Geodesy and Cartography], 2022. High-resolution digital orthophotomaps. Geoportal online: www.geoportal.gov.pl, (accessed July 1, 2022),
GUS [Główny Urząd Statystyczny], 2020. Demographic yearbook 2019. Główny Urząd Statystyczny, Warszawa, Poland.
Huber M., Knutti R., 2012. Anthropogenic and natural warming inferred from changes in Earth’s energy balance. Nature Geoscience 5(1): 31–36. DOI: https://doi.org/10.1038/ngeo1327
Hurtt G.C., Frolking S., Fearon M., Moore B., Shevliakova E., Malyshev S., Pacala S., Houghton R.A., 2006. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biology 12(7): 1208–1229. DOI: https://doi.org/10.1111/j.1365-2486.2006.01150.x
IPCC [Intergovernmental Panel on Climate Change], 2021. Climate change 2021: The physical science basis. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds), Contribution of working Group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
Jat M., Garg P., Khare D., 2008. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation 10(1): 26–43. DOI: https://doi.org/10.1016/j.jag.2007.04.002
Jones G., Stott P., Christidis N., 2013. Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. Journal of Geophysical Research: Atmospheres 118(10): 4001–4024. DOI: https://doi.org/10.1002/jgrd.50239
Kaplan G., Avdan U., Avdan Z.Y., 2018. Urban heat Island analysis using the landsat 8 satellite data: A case study in Skopje, Macedonia. Proceedings 2(7): 358. DOI: https://doi.org/10.3390/ecrs-2-05171
Kossowska-Cezak U., 1978. Próba określenia wpływu zabudowy miejskiej na wielkość zachmurzenia na przykładzie Warszawy (Tentative definition of the effect of concentrated urban buildings on the amount of cloudiness with Warsaw as an example). Prace i Studia IG UW 25(10): 55–64.
Kuczmarski M., 1982. Usłonecznienie i zachmurzenie w Krakowie (Sunshine duration and cloud cover in Cracow). Przegląd Geofizyczny 27(3–4): 241–249.
Kulesza K., 2020. Spatiotemporal variability and trends in global solar radiation over Poland based on satellite-derived data (1986–2015). International Journal of Climatology 40(15): 6526–6543. DOI: https://doi.org/10.1002/joc.6596
Landsberg H.E., 1981. The urban climate. International geophysics series. 28. Academic Press, New York.
Langanke T., 2016. Copernicus land monitoring service – High resolution layer imperviousness, product specifications document. Copernicus Team at EEA, EEA, Copenhagen.
Lean J., Rind D., 2008. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters 35(18): L18701. DOI: https://doi.org/10.1029/2008GL034864
Lowry W.P., 1998. Urban effects on precipitation amount. Progress in Physical Geography: Earth and Environment 22: 477–520. DOI: https://doi.org/10.1177/030913339802200403
Mahmood, R., Pielke, R.A., Hubbard, K.G., Niyogi, D., Dirmeyer, P.A., Mcalpine, C., Carleton, A.M., Hale, R., Gameda, S., Beltran-Przekurat, A., Baker, B., Mcnider, R., Legates, D.R., Shepherd, M., Du, J., Blanken, P.D., Frauenfeld, O.W., Nair, U.S., Fall, S., 2014. Land cover changes and their biogeophysical effects on climate. International Journal of Climatology 34: 929–953. DOI: https://doi.org/10.1002/joc.3736
Meehl G., Washington W., Ammann C., Arblaster J., Wigley T., Tebaldi C., 2004. Combinations of natural and anthropogenic forcings in twentieth-century climate. Journal of Climate 17(19): 3721–3727. DOI: https://doi.org/10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2
Oke T., 1973. City size and the urban heat Island. Atmospheric Environment 7(8): 769–779. DOI: https://doi.org/10.1016/0004-6981(73)90140-6
Prokop G., Jobstmann H., Schönbauer A., 2011. Overview of best practices for limiting soil sealing or mitigating its effects in EU-27. European Communities, 227.
Rasul A., Balzter H., Ibrahim G.R.F., Hameed H.M., Wheeler J., Adamu B., Ibrahim S., Najmaddin P.M., 2018. Applying built-up and bare-soil indices from landsat 8 to cities in dry climates. Land 7(3): 81. DOI: https://doi.org/10.3390/land7030081
Shepherd J.M., 2005. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions 9: 1–27. DOI: https://doi.org/10.1175/EI156.1
Soltani A., Sharifi E., 2017. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Frontiers of Architectural Research 6(4): 529–538. DOI: https://doi.org/10.1016/j.foar.2017.08.001
Souleymane S., Quesada B., 2020. Anthropogenic land cover change impact on climate extremes during the 21st century. Environmental Research Letters 15(3): 034002. DOI: https://doi.org/10.1088/1748-9326/ab702c
Stephens G., O’Brien D., Webster P., Pilewski P., Kato S., Li J., 2015. The albedo of Earth. Reviews of Geophysics 53(1): 141–163. DOI: https://doi.org/10.1002/2014RG000449
Sun Z., Wang C., Guo H., Shang R., 2017. A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from landsat imagery. Remote Sensing 9(9): 942. DOI: https://doi.org/10.3390/rs9090942
Tan M., Li X., Xie H., Lu C., 2005. Urban land expansion and arable land loss in China—A case study of Beijing-Tianjin-Hebei region. Land Use Policy 22(3): 187–196. DOI: https://doi.org/10.1016/j.landusepol.2004.03.003
Tett S., 2002. Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research 107(D16). DOI: https://doi.org/10.1029/2000JD000028
Theeuwes N., Barlow J., Teuling A., Grimmond C., Kotthaus S., 2019. Persistent cloud cover over mega-cities linked to surface heat release. npj Climate and Atmospheric Science 2(1): 15. DOI: https://doi.org/10.1038/s41612-019-0072-x
Ustrnul Z., Wypych A., Czekierda D., 2021. Air temperature change. In: Falarz M. (ed.), Climate change in Poland, Springer Climate: 275–330. DOI: https://doi.org/10.1007/978-3-030-70328-8_11
Wang J., Chen Y., Liao W., He G., Tett S., Yan Z., Zhai P., Feng J., Ma W., Huang C., Hu Y., 2021. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nature Climate Change 11(12): 1084–1089. DOI: https://doi.org/10.1038/s41558-021-01196-2
Wigley T., Santer B., 2013. A probabilistic quantification of the anthropogenic component of twentieth century global warming. Climate Dynamics 40(5–6): 1087–1102. DOI: https://doi.org/10.1007/s00382-012-1585-8
Zhu X., Li D., Zhou W., Ni G., Cong Z., Sun T., 2017. An idealized LES study of urban modification of moist convection. Quarterly Journal of the Royal Meteorological Society 143(709): 3228–3243. DOI: https://doi.org/10.1002/qj.3176
License
Copyright (c) 2023 Krzysztof Bartoszek, Wojciech Łachowski, Dorota Matuszko
This work is licensed under a Creative Commons Attribution 4.0 International License.