Abstract
The research identified patterns in the multiannual course of start and end dates, and length of growing sea- son (GS) in Central Europe since the end of the 19th century in selected cities of Central Europe in the period 1893–2020. GS start in the analysed stations was characterised by high year-to-year variability, particularly in those located more southwards, i.e. in Prague and Vienna. A smaller variability occurred in GS end dates. The GS was subject to prolon- gation, although these changes in particular cities were uneven and had different causes. In Toruń and Potsdam, its increase was caused by a greater shift of the end date, and in the remaining stations, it was determined by its earlier start date. Two subperiods were distinguished that differ in terms of intensity of changes of the start and end dates, as well as the length of the GS. The intensification was observed recently.
References
Aasa A., Jaagus J., Ahas R., Sepp M., 2004. The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology 24(12): 1551–1564. DOI: https://doi.org/10.1002/joc.1066
Ahas R., Aasa A., Menzel A., Fedotova V.G., Scheifinger H., 2002. Changes in European spring phenology. International Journal of Climatology 22: 1727–1738. DOI: https://doi.org/10.1002/joc.818
Backlund P., Schimel D., Janetos A., Hatfield J., Ryan M.G., Archer S.R., Lettenmaier D., 2008. Introduction. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States, United States Climate Change Science Program Synthesis and Assessment Product 4.3: 11–20.
Bai J., Perron P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica 66: 47–78. DOI: https://doi.org/10.2307/2998540
Barichivich J., Briffa K.R., Myneni R.B., Osborn T.J., Melvin T.M., Ciais P., Piao S., Tucker C., 2013. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biology 19(10): 3167–3183. DOI: https://doi.org/10.1111/gcb.12283
Barnett T.P., Adam J.C., Lettenmaier D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303–309. DOI: https://doi.org/10.1038/nature04141
Bartoszek K., Banasiewicz I., 2007. Agrometeorologiczna charakterystyka okresu wegetacyjnego w rejonie Lublina na tle wielolecia 1951-2005. Acta Agrophysica 9(2): 275–283.
Bartoszek K., Siłuch M., 2015. Porównanie metody Gumińskiego i teledetekcji satelitarnej w aspekcie wyznaczania dat początku okresu wegetacyjnego na obszarze Polski. Inżynieria Ekologiczna 45: 99–105. DOI: https://doi.org/10.12912/23920629/60601
Bartoszek, K., Węgrzyn A., 2011. Uwarunkowania cyrkulacyjne początku okresu wegetacyjnego w Polsce Wschodniej. Annales UMCS Section B 66(1): 93–102.
Beniston M., 2003. Climatic change in mountain regions: A review of possible impacts. Climatic Change 59: 5–31. DOI: https://doi.org/10.1007/978-94-015-1252-7_2
Bootsma A., 1994. Long term (100 yr) climate trends for agriculture at selected locations in Canada. Climatic Change 26: 65–88. DOI: https://doi.org/10.1007/BF01094009
Carter T.R., 1998. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agricultural and Food Science Finland 7: 161–179. DOI: https://doi.org/10.23986/afsci.72857
Chen X., Tan Z., Schwartz M.D., Xu C., 2000. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China. International Journal of Biometeorology 44: 97–101. DOI: https://doi.org/10.1007/s004840000056
Chmielewski F.M., Muller A., Bruns, E., 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology 121: 69–78. DOI: https://doi.org/10.1016/S0168-1923(03)00161-8
Chmielewski F.M., Rötzer, T., 2002. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research 19: 257–264. DOI: https://doi.org/10.3354/cr019257
Christiansen D.E., Markstrom S.L., Hay L.E., 2011. Impacts of climate change on the growing season in the United States. Earth Interactions 15(33): 1–17. DOI: https://doi.org/10.1175/2011EI376.1
Christidis N., Stott P.A., Brown S., Karoly D.J., Caesar, J., 2007. Human contribution to the lengthening of the growing season during 1950–99. Journal of Climate 20(21): 5441–5454. DOI: https://doi.org/10.1175/2007JCLI1568.1
Cotton P.A., 2003. Avian migration phenology and global climate change. Proceedings of the National Academy of Sciences USA 100: 12219–12222. DOI: https://doi.org/10.1073/pnas.1930548100
Cui L., Shi J., 2021. Evaluation and comparison of growing season metrics in arid and semi-arid areas of northern China under climate change. Ecological Indicators 121: 107055. DOI: https://doi.org/10.1016/j.ecolind.2020.107055
Cui L., Shi J., Ma Y., Du H., 2017. Distribution and trend in the thermal growing season in China during 1961–2015. Physical Geography 38(6): 1–18. DOI: https://doi.org/10.1080/02723646.2017.1344497
Cui L., Shi J., Ma Y., Liu X., 2018. Variations of the thermal growing season during the period 1961–2015 in northern China. Journal of Arid Land 10(2): 264–276. DOI: https://doi.org/10.1007/s40333-018-0001-6
Czernecki B., Jabłońska K., 2016. Reconstruction of late spring phenophases in Poland and their response to climate change, 1951–2014. Acta Agrobotanica 69(2): 1671. DOI: https://doi.org/10.5586/aa.1671
Dai J.H., Wang H.J., Ge Q.S., 2014. The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology 58: 521–528. DOI: https://doi.org/10.1007/s00484-013-0679-2
Degirmendžić J., Kożuchowski K., Wibig, J., 2000. Epoki cyrkulacyjne XX wieku i zmienność typów cyrkulacji w Polsce. Przegląd Geofzyczny 45(3–4): 221–239.
Dong M.Y., Jiang Y., Zhang D.Y., Wu Z.F., 2013. Spatiotemporal change in the climatic growing season in Northeast China during 1960–2009. Theoretical and Applied Climatology 111(3): 693–701. DOI: https://doi.org/10.1007/s00704-012-0706-y
Duarte L., Teodoro A.C., Monteiro A.T., Cunha M., Gonçalvese H., 2018. QPhenoMetrics: an open source software application to assess vegetation phenology metrics. Computers and Electronic in Agriculture 148: 82–94. DOI: https://doi.org/10.1016/j.compag.2018.03.007
Fagre D.B., Charles C.W., Allen C.D., Birkeland C., Chapin F.S., Groffman P.M., Guntenspergen G.R., Knapp A.K.; McGuire A.D., Mulholland P.J., Peters D.P.C., Roby D.D., Sugihara G., 2009. Case studies. Thresholds of climate change in ecosystems, United States Climate Change Science Program Synthesis and Assessment Product 4.2: 15–34.
Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein Tank A.M.G., Peterson T.C., 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19: 193–212. DOI: https://doi.org/10.3354/cr019193
Ge Q.S., Wang H.J., Rutishauser T., Dai J.H., 2014. Phenological response to climate change in China: A meta-analysis. Global Change Biology 21(1): 265–274. DOI: https://doi.org/10.1111/gcb.12648
Graczyk D., Kundzewicz Z.W., 2016. Changes of temperature-related agroclimatic indices in Poland. Theoretical and Applied Climatology 124: 401–410. DOI: https://doi.org/10.1007/s00704-015-1429-7
Groisman P.Y., Knight R.W., Karl T.R., Easterling D.R., Sun B., Lawrimore J.H., 2004. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. Journal of Hydrometeorology 5: 64–85. DOI: https://doi.org/10.1175/1525-7541(2004)005<0064:CCOTHC>2.0.CO;2
Gumiński R., 1948. Próba wydzielenia dzielnic rolniczo-klimatycznych w Polsce. Przegląd Meteorologiczno-Hydrologiczny 1: 7–20.
Haggerty B.P., Mazer S.J., 2008. The phenology handbook. Phenology Stewardship Program Report, University of California, Santa Barbara: 1–43.
Irannezhad M., Kløve, B., 2015. Do atmospheric teleconnection patterns explain variations and trends in thermal growing season parameters in Finland? International Journal of Climatology 35(15): 4619–4630. DOI: https://doi.org/10.1002/joc.4311
Jaagus, J., 2006. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology 83: 77–88. DOI: https://doi.org/10.1007/s00704-005-0161-0
Jabłońska K., Kwiatkowska-Falińska A., Czernecki B., Walawender J.P., 2015. Changes in spring and summer phenology in Poland – Responses of selected plant species to air temperature variations. Polish Journal of Ecology 63(3): 311–319. DOI: https://doi.org/10.3161/15052249PJE2015.63.3.002
Janetos A., Hansen L., Inouye D., Kelly B.P., Meyerson L., Peterson B., Shaw R., 2008. Biodiversity. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States, United States Climate Change Science Program Synthesis and Assessment Product 4.3: 151–182.
Jones P.D., Briffa K.R., Osborn T.J., Moberg A., Bergström, H., 2002. Relationships between circulation strength and the variability of growing-season and cold-season climate in northern and central Europe. Holocene 12: 643–656. DOI: https://doi.org/10.1191/0959683602hl577rp
Jones P.D., Briffa, K.R., 1995. Growing season temperatures over the former Soviet Union. International Journal of Climatology 151: 943–959. DOI: https://doi.org/10.1002/joc.3370150902
Karlsen S.R., Solheim I., Beck P.S., Høgda K.A., Wielgolaski F.E., Tømmervik H., 2007. Variability of the start of the growing season in Fennoscandia, 1982–2002. International Journal of Biometeorology 51(6): 513–524. DOI: https://doi.org/10.1007/s00484-007-0091-x
Kępińska-Kasprzak M., Mager, P., 2015. Thermal growing season in Poland calculated by two different methods. Annals of Warsaw University of Life Sciences-SGGW Land Reclamation 47(3): 261–273. DOI: https://doi.org/10.1515/sggw-2015-0030
Kexin Z., Xiaogang D., Jiaoting P., Zhihua S., Yanhong Z., 2021. Analysis of changes in thermal growing season and their relationships with atmospheric teleconnection patterns for the Yellow River basin in China. Physical Geography 42(2): 183–198. DOI: https://doi.org/10.1080/02723646.2020.1799539
Kolářová E., Nekovář J., Adamík, P., 2014. Long-term temporal changes in central European tree phenology (1946−2010) confirm the recent extension of growing seasons. International Journal of Biometeorology 58(8): 1739–1748. DOI: https://doi.org/10.1007/s00484-013-0779-z
Kolendowicz L., Czernecki B., Półrolniczak M., Taszarek M., Tomczyk A.M., Szyga-Pluta K., 2019. Homogenization of air temperature and its long-term trends in Poznań (Poland) for the period 1848–2016. Theoretical and Applied Climatology 136: 1357–1370. DOI: https://doi.org/10.1007/s00704-018-2560-z
Koźmiński C., Nidzgorska-Lencewicz J., Mąkosza A., Michalska B., 2021. Ground frosts in Poland in the growing season. Agriculture 11(7): 573. DOI: https://doi.org/10.3390/agriculture11070573
Linderholm H.W., 2006. Growing season changes in the last century. Agricultural and Forest Meteorology 137(1): 1–14. DOI: https://doi.org/10.1016/j.agrformet.2006.03.006
Linderholm H.W., Walther A., Chen D., 2008. Twentieth-century trends in the thermal growing season in the Greater Baltic area. Climatic Change 87: 405–419. DOI: https://doi.org/10.1007/s10584-007-9327-3
Liu X., Zhu X., Pan Y., Zhu W., Zhang J., Zhang, D., 2016. Thermal growing season and response of alpine grassland to climate variability across the Three-Rivers Headwater Region, China. Agricultural and Forest Meteorology 220: 30–37. DOI: https://doi.org/10.1016/j.agrformet.2016.01.015
Logan J.A., Regniere J., Powell J.A., 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1: 130–137. DOI: https://doi.org/10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2
Menzel A., 2000: Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology 44: 76–81. DOI: https://doi.org/10.1007/s004840000054
Menzel A., Estrella N., Heitland W., Susnik A., Schleip C., Dose V., 2008. Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest. International Journal of Biometeorology 52(3): 209–218. DOI: https://doi.org/10.1007/s00484-007-0113-8
Menzel A., Fabian P., 1999. Growing season extended in Europe. Nature 397: 659–659. DOI: https://doi.org/10.1038/17709
Menzel A., Jakobi G., Ahas R., Scheifinger H., Estrella N., 2003. Variations of the climatological growing season (1951–2000) in Germany compared with other countries. International Journal of Climatology 23: 793–812. DOI: https://doi.org/10.1002/joc.915
Nicholls N., 2005. Climate variability, climate change and the Australian snow season. Australian Meteorological Magazine 54: 177–185.
Nieróbca A., Kozyra J., Mizak K., Wróblewska, E., 2013. Zmiana długości okresu wegetacyjnego w Polsce. Woda-Środowisko-Obszary Wiejskie 13(2): 81–94.
Park T., Ganguly S., Tømmervik H., Euskirchen E.S., Høgda K.A., Karlsen S.R., Brovkin V., Nemani R.R., Myneni R.B., 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters 11(8): 084001. Online: iopscience.iop.org/1748-9326/11/8/084001 (accessed 31 August 2022). DOI: https://doi.org/10.1088/1748-9326/11/8/084001
Parmesan C., Yohe G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. DOI: https://doi.org/10.1038/nature01286
Peng D., Wu C., Li C., Zhang X., Liu Z., Ye H., Luo S., Liu X., Hu Y., Fang, B., 2017. Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecological Indicators 77: 323–336. DOI: https://doi.org/10.1016/j.ecolind.2017.02.024
Peng S., Huang J., Sheehy J.E., Laza R.C., Visperas R.M., Zhong X., Centeno G.S., Khush G.S., Cassman K.G., 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences USA 101: 9971–9975. DOI: https://doi.org/10.1073/pnas.0403720101
Peterson B.J., Holmes R.M., McClelland J.W., Vorosmarty C.J., Lammers R.B., Shiklomanov A.I., Shiklomanov I.A., Rahmstorf S., 2002. Increasing river discharge to the Arctic Ocean. Science 298: 2171–2173. DOI: https://doi.org/10.1126/science.1077445
Piao S.L., Fang J.Y., Zhou L.M., Ciais P., Zhu B., 2006. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology 12: 672–685. DOI: https://doi.org/10.1111/j.1365-2486.2006.01123.x
Pospieszyńska A., Przybylak R., 2019. Air temperature changes in Toruń (central Poland) from 1871 to 2010. Theoretical and Applied Climatology 135: 707–724. DOI: https://doi.org/10.1007/s00704-018-2413-9
Potopova V., Zahradnicek P., Turkott L., Stepanek P., Soukup J., 2015. The effects of climate change on variability of the growing seasons in the Elbe River Lowland, Czech Republic. Advances in Meteorology: Article ID 546920. DOI: https://doi.org/10.1155/2015/546920
Qian C., Fu C.B., Wu Z.H., Yan Z.W., 2009. On the secular change of spring onset at Stockholm. Geophysical Research Letters 36: L12706. DOI: https://doi.org/10.1029/2009GL038617
Qian, B., Gameda, S., 2010. Canadian agroclimatic scenarios projected from a global climate model. 90th American Meteorological Society Annual Meeting, January 17–21, Atlanta, Georgia. Online: ams.confex.com/ams/pdfpapers/165170.pdf (accessed 31 August 2022).
Ryan M.G., Archer S.R., 2008. Land resources: Forest and arid lands. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States, United States Climate Change Science Program Synthesis and Assessment Product 4.3: 75–120.
Skaugen T.E., Tveito O.E., 2004. Growing-season and degree-day scenario in Norway for 2021–2050. Climate Research 26(3): 221–232. DOI: https://doi.org/10.3354/cr026221
Skowera B., Kopeć B., 2008. Okresy termiczne w Polsce południowo-wschodniej (1971–2000). Acta Agrophysica 12(2): 517–526.
Song Y., Linderholm H.W., Chen D., Walther A., 2009. Trends of the thermal growing season in China. 1951–2007. International Journal of Climatology 30: 33–43. DOI: https://doi.org/10.1002/joc.1868
Stenseth N.C., Mysterud A., Ottersen G., Hurrel J.W., Chan K.S., Lima, M., 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296. DOI: https://doi.org/10.1126/science.1071281
Studer S., Stöckli R., Appenzeller C., Vidale P.L., 2007. A comparative study of satellite and ground-based phenology. International Journal of Biometeorology 51: 405–414. DOI: https://doi.org/10.1007/s00484-006-0080-5
Szwejkowski Z., Kuchar L., Dragańska E., Cymes I., Cymes I., 2017: Current and future agroclimate conditions in Poland in perspective of climate change. Acta Agrophysica 24(2): 355–364.
Szyga-Pluta K., 2011. Termiczne pory roku w Poznaniu w latach 2001-2008. Przegląd Geograficzny 83(1): 109–119. DOI: https://doi.org/10.7163/PrzG.2011.1.6
Szyga-Pluta K., Tomczyk A.M., 2019. Anomalies in the length of the growing season in Poland in the period 1966–2015. Idöjárás 123(3): 391–408. DOI: https://doi.org/10.28974/idojaras.2019.3.8
Tomczyk A.M., Szyga-Pluta K., 2019. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theoretical and Applied Climatology 135: 1517–1530. DOI: https://doi.org/10.1007/s00704-018-2450-4
Tylkowski J., 2015. The variability of climatic vegetative seasons and thermal resources at the Polish Baltic Sea coastline in the context of potential composition of coastal forest communities. Baltic Forestry 21: 73–82.
Walther A., Linderholm H.W., 2006. A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology 51(2): 107–118. DOI: https://doi.org/10.1007/s00484-006-0048-5
Wang H.J., Dai J.H., Zheng J.Z., Ge Q.S., 2014. Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850–2009. International Journal of Climatology 35(6): 913–922. DOI: https://doi.org/10.1002/joc.4026
Xia J., Yan Z., Jia G., Zeng H., Jones P.D., Zhou W., Zhang, A., 2015. Projections of the advance in the start of the growing season during the 21st century based on CMIP5 simulations. Advances in Atmospheric Sciences 32(6): 831–838. DOI: https://doi.org/10.1007/s00376-014-4125-0
Xia J., Yan Z., Wu P., 2013. Multidecadal variability in local growing season during 1901–2009. Climate Dynamics 41(2): 295–305. DOI: https://doi.org/10.1007/s00382-012-1438-5
Zeileis A., Leisch F., Hornik K., Kleiber C., 2002. Strucchange: An R package for testing for structural change in linear regression models. Journal of Statistical Software 7(2): 1–38. DOI: https://doi.org/10.18637/jss.v007.i02
Żmudzka E., 2012. Wieloletnie zmiany zasobów termicznych w okresie wegetacyjnym i aktywnego wzrostu roślin w Polsce. Woda-Środowisko-Obszary Wiejskie 12(2): 377–389.
License
Copyright (c) 2023 Katarzyna Szyga-Pluta, Arkadiusz M. Tomczyk, Katarzyna Piotrowicz, Ewa Bednorz
This work is licensed under a Creative Commons Attribution 4.0 International License.