Abstract
Kalimantan experiences fire hazards almost every year, which threaten the largest tropical forest in South- east Asia. Climatic conditions, such as increasing surface temperature and decreasing rainfall, become important es- pecially when El Nino Southern Oscillation (ENSO) occurs. Studies on fire are commonly conducted based on the climatic condition such as the dry or wet season, but those which focused on analysis of fire occurrences with the specific ENSO phases are still limited. This study aims to identify the spatial and temporal distribution of rainfall, land surface temperature, and soil moisture and analyses the distribution of hotspots in Kalimantan from 2014 to 2020 dur- ing different ENSO phases. The data used are Moderate Resolution Imaging Spectroradiometer (MODIS) for hotspot analysis, Global Precipitation Measurement (GPM) for rainfall analysis, MODIS Land Surface Temperature (LST) for surface temperature analysis and Soil Moisture Active Passive (SMAP) for soil moisture analysis. The methods used were descriptive and spatial analyses based on each ENSO phase, which were then combined to analyse the temporal and spatial distribution of fire, rainfall, LST and soil moisture. The temporal distribution shows a positive relationship between ENSO, rainfall, LST, soil moisture and hotspots with a confidence level of 90% in the dry months of August– October. Fire occurred in most parts of West and Central Kalimantan, associated with low elevation, organic soil types and agricultural peatland. The average trend of increasing hotspots is 17.4% in the El Nino phase and decreasing hot- spots by 84.7% in the La Nina phase during August–October in Kalimantan.
References
Astiani D., Mujiman, Hatta M., Hanisah, Fifian F. 2015. Soil CO2 respiration along with annual crops or land-cover type gradients on west Kalimantan degraded Peatland forest. Procedia Environmental Sciences 28: 132–141. DOI: https://doi.org/10.1016/j.proenv.2015.07.019
Arisman. 2020. Trend Analysis of Forest and Land Fires in Indonesia periods 2015–2019. Jurnal Sains Teknologi & Lingkungan 6(1): 1–9. DOI: https://doi.org/10.29303/jstl.v6i1.131
Bussberg N.W. 2021. Spatio-temporal statistics with R. The American Statistician 75(1). DOI: https://doi.org/10.1080/00031305.2020.1865066
Chapman S., Syktus J., Trancoso R., Salazar A., Thatcher M., Watson J.E.M., Meijaard E., Sheil D., Dargusch P., McAlpine C.A., 2020. Compounding impact of deforestation on Borneo’s climate during El Nino events. Environmental Research Letter 15(8). DOI: https://doi.org/10.1088/1748-9326/ab86f5
Chen C.C., Lin H.W., Yu J.Y., Lo M.H., 2016. The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños? Environmental Research Letters 11(10): 1–7. DOI: https://doi.org/10.1088/1748-9326/11/10/104003
Dariah A., Agus F., Susanti E., Jubaedah. 2013. Relationship between Distance Sampling and Carbon Dioxide Emission under Oil Palm Plantation. Journal of Tropical Soils 18(2): 125. DOI: https://doi.org/10.5400/jts.2013.v18i2.125-130
Fanin T., Van Der Werf G.R., 2017. Precipitation-fire linkages in Indonesia (1997–2015). Biogeosciences 14: 3995–4008. DO DOI: https://doi.org/10.5194/bg-14-3995-2017
Fatkhuroyan, Wati T., Kurniawan R., 2021. Characteristics of soil moisture in indonesia using ESA CCI satellites products. Indonesian Journal of Geography 53(1): 54–60. DOI: https://doi.org/10.22146/ijg.43905
Food and Agriculture Organization of the United Nations. 2014. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
Goss M., Swain D.L., Abatzoglou J.T., Sarhadi A., Kolden C.A., Williams A.P., Diffenbaugh N.S. 2020. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters 15(9). DOI: https://doi.org/10.1088/1748-9326/ab83a7
Hatta M., 2008. Dampak Kebakaran Hutan Terhadap Sifat-Sifat Tanah di Kecamatan Besitdang Kabupaten Langkat. USU, Medan.
Hurteau, M.D., Liang, S., Westerling, A.L., Wiedinmyer, C. 2019. Vegetation-fire feedback reduces projected area burned under climate change. Scientific Reports 9(1): 2838. DOI: https://doi.org/10.1038/s41598-019-39284-1
Ishikura K., Yamada H., Toma Y., Takakai F., Morishita T., Darung U., Limin A., Limin S.H., Hatano R., 2017. Effect of groundwater level fluctuation on the soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition 63(1): 1–13. DOI: https://doi.org/10.1080/00380768.2016.1244652
Larasati B., Kanzaki M., Purwanto R.H., Sadono R. 2019. Fire regime in a peatland restoration area: Lesson from central Kalimantan. Jurnal Ilmu Kehutanan 13(2): 210. DOI: https://doi.org/10.22146/jik.52436
McAlpine C.A., Johnson A., Salazar A., Syktus J., Wilson K., Meijaard E., Leonie S., Dargusch P., Nordin H., Sheil D., 2018. Forest loss and Borneo’s climate. Environmental Research Letters 13. DOI: https://doi.org/10.1088/1748-9326/aaa4ff
McPhaden M.J., Santoso A., Cai W., 2020. Introduction to El Niño Southern oscillation in a changing climate. Geophysical Monograph Series. DOI: https://doi.org/10.1002/9781119548164
Najib M.K., Nurdiati S., Sopaheluwakan A., 2022. Copula-based joint distribution analysis of the ENSO effect on the drought indicators over Borneo fire-prone areas. Modeling Earth System and Environment 8: 2817–2826. DOI: https://doi.org/10.1007/s40808-021-01267-5
NASA. (n.d). Soil moisture active passive instrument. Jet Propulsion Laboratory California Institute of Technology. Online: smap.jpl.nasa.gov/observatory/instrument/ (accessed 20 October 2021).
Nurdiati S., Sopaheluwakan A., Septiawan P., 2021. Spatial and temporal analysis of El Niño impact on land and forest fire in Kalimantan and Sumatra. Agromet 35(1): 1–10. DOI: https://doi.org/10.29244/j.agromet.35.1.1-10
Nusantara R.W., Sudarmadji, Djohan T.S., Haryono E., 2020. Impact of land-use change on soil carbon dynamics in tropical peatland, West Kalimantan- Indonesia. Indonesian Journal of Geography 52(1): 61–68. DOI: https://doi.org/10.22146/ijg.48451
Ratna S.B., Cherchi A., Osborn T.J., Joshi M., Uppara U., 2021. The extreme positive Indian Ocean Dipole of 2019 and associated Indian summer monsoon rainfall response. Geophysical Research Letters 48(2): 1–11. DOI: https://doi.org/10.1029/2020GL091497
Safril A., 2021. Rainfall variability study in Kalimantan as an impact of climate change and El Nino. AIP Conference Proceedings: 2320. DOI: https://doi.org/10.1063/5.0039480
Santika T., Budiharta S., Law E.A., Dennis R.A., Dohong A., Struebig M.J., Medrilzam, Gunawan H., Meijaard E., Wilson K.A., 2020. Interannual climate variation, land type, and village livelihood effects on fires in Kalimantan, Indonesia. Global Environmental Change 64(c): 1–11. DOI: https://doi.org/10.1016/j.gloenvcha.2020.102129
Sari N.M., Rachmita N., Manessa M.D.M., 2020. Hotspot distribution analysis in east Kalimantan Province 2017–2019 to support forest and land fires mitigation. Indonesian Journal of Environmental Management and Sustainability 4(1): 28–33. DOI: https://doi.org/10.26554/ijems.2020.4.1.28-33
Schober P., Boer C., Schwarte L.A., 2018. Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia 126(5). DOI: https://doi.org/10.1213/ANE.0000000000002864
Sekaranom A.B., Nurjani E., 2019. The development of articulated weather generator model and its application in simulating future climate variability. IOP Conference Series: Earth and Environmental Science 256. DOI: https://doi.org/10.1088/1755-1315/256/1/012044
Sekaranom A.B., Nurjani E., Harini R., Muttaqin A.S., 2020. Simulation of daily rainfall data using articulated weather generator model for seasonal prediction of ENSO-affected zones in Indonesia. Indonesian Journal of Geography 52: 143–153. DOI: https://doi.org/10.22146/ijg.50862
Sekaranom A.B., Suarma U., Nurjani E., 2020. Climate extremes over the maritime continent and their associations with climate extremes over the maritime continent and their associations with Madden-Jullian Oscillation. OP Conference Series: Earth and Environmental Science 451. DOI: https://doi.org/10.1088/1755-1315/451/1/012006
Singh M., Yan S. 2021. Spatial-temporal variations in deforestation hotspots in Sumatra and Kalimantan from 2001 to 2018. Ecology and Evolution 11: 7302–7314. DOI: https://doi.org/10.1002/ece3.7562
Sloan S., Locatelli B., Wooster M.J., Gaveau D.L.A., 2017. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Global Environmental Change 47(October): 95–109. DOI: https://doi.org/10.1016/j.gloenvcha.2017.10.001
Spessa A.C., Field R.D., Pappenberger F., Langner A., Englhart S., Weber U., Stockdale T., Siegert F., Kaiser J.W., Moore J., 2015. Seasonal forecasting of fire over Kalimantan, Indonesia. Natural Hazards and Earth System Sciences 15(3): 429–442. DOI: https://doi.org/10.5194/nhess-15-429-2015
Sudibyakto H.A., Gunawan D., Nurjani E., Sekaranom A.B., 2021. A projection on climate change impact towards meteorological droughts over Java Island, Indonesia. Proceedings of International Conference on Agriculture, Food Science, Natural Resource Management and Environmental Dynamics: The Technology, People and Sustainable Development, 2016.
Susilo G.E., Yamamoto K., Imai T., Ishii Y., Fukami H., Sekine M., 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal 58(3): 539–548. DOI: https://doi.org/10.1080/02626667.2013.772298
Yananto, A., Dewi S., 2016. Analysis of the 2015 El Nino event and its influence on the increase of hotspots in Sumatera and Kalimantan. Jurnal Sains & Teknologi Modifikasi Cuaca 17(1), 11–19. DOI: https://doi.org/10.29122/jstmc.v17i1.544
License
Copyright (c) 2023 Rahma Aulia Zahra, Emilya Nurjani, Andung Bayu Sekaranom
This work is licensed under a Creative Commons Attribution 4.0 International License.