Effects of geomorphological processes and phytoclimate conditions change on forest vegetation in the Pomeranian Bay coastal zone (Wolin National Park, West Pomerania)
PDF

Keywords

forest vegetation
cliff edge zone
erosion and denudation processes
phytoclimatic conditions
Pomeranian Bay
Wolin Island

How to Cite

Tylkowski, J., Paluszkiewicz, R., Winowski, M., Czyryca, P., Kostrzewski, A., Mazurek, M., & Rachlewicz, G. (2023). Effects of geomorphological processes and phytoclimate conditions change on forest vegetation in the Pomeranian Bay coastal zone (Wolin National Park, West Pomerania). Quaestiones Geographicae, 42(1), 141–160. https://doi.org/10.14746/quageo-2023-0010

Abstract

The functioning of plant associations, including forest associations, in the coastal cliff edge zone of the Pomeranian Bay in the Wolin National Park (WNP) is determined by short-term factors related to the dynamics of erosion and denudation processes and long-term phytoclimatic conditions’ changes. The study presents a temporary analysis of the occurrence of sea abrasion and water and aeolian erosion, based on the applied hydrometeorological threshold values. The influence of changes in phytoclimatic conditions on the development and productivity of coastal forests with the dominant species of Fagus sylvatica was also presented. Assessments of spatial susceptibility to erosion of the cliff coast and the existing plant associations were also carried out in conditions of the risk of coast erosion. It was found that 55% of the cliff edge zone of the Pomeranian Bay of the WNP and the forest associations (mainly Luzulo pilosae-Fagetum) occurring there are in the zone of particular risk of increased erosion and denudation processes. In addition, unfavourable trends in changes in phytoclimatic conditions in the 21st century were found, which reflect climate changes unfavourable to the development of beech forests on Wolin Island.

https://doi.org/10.14746/quageo-2023-0010
PDF

Funding

The research was supported mainly by the Forest Fund, within the scope of funding admit- ted by the General Directorate of the State Forests National Forest Holding for Wolin National Park (grant No. EZ.0290.1.22.2021 of 27.08.2021, “Interakcja procesów erozyjno-denudacyjnych i zbiorowisk leśnych w strefach krawędziowych na obszarze Wolińskiego Parku Narodowego”)

References

Bamber J.L., Oppenheimer M., Kopp R.E., Aspinall W.P., Cooke R.M., 2019. Ice sheet contributions to future sea-level rise from structured expert judgment. Proceedings of the National Academy of Sciences of the United States of America 116: 11195–11200. DOI: https://doi.org/10.1073/pnas.1817205116

Borówka R.K., Gonera P., Kostrzewski A., Zwoliński Z., 1982. Origin age and paleogeographic significance of cover sands in the Wolin end moraine area, North-West Poland. Quaestiones Geographicae 8: 19–36.

Borówka R.K., Goslar T., Pazdur A., 1999. Wolińska morena czołowa: wiek struktur glacitektonicznych w świetle danych litostratygraficznych oraz datowań radiowęglowych. In: Borówka R.K., Młynarczyk Z., Wojciechowski A. (eds.), Ewolucja geosystemów nadmorskich południowego Bałtyku. Bogucki Wydawnictwo Naukowe, Poznań-Szczecin: 124–132.

Borówka M., Tomaszewski M., 1978. Geneza rzeźby i charakterystyka osadów czwartorzędowych wyspy Wolin. In: Kostrzewski A. (ed.), Studia z geografii fizycznej i ekonomicznej wyspy Wolin. SKNG UAM, Poznań: 21–31.

Budeanu M., Petritan A.M., Popescu F., Vasile D., Tudose N.C., 2016. The resistance of European beech (Fagus Sylvatica) from the eastern natural limit of species to climate change. Notulae Botanicae Horti Agrobotanici 44(2): 625–633. DOI: https://doi.org/10.15835/nbha44210262

Budyko M.I., 1975. Klimat i życie. PWN, Warszawa.

Christensen O.B., Kjellström E., Dieterich C., Gröger M., Meier H.E.M., 2022. Atmospheric regional climate projections for the Baltic Sea Region until 2100. Earth System Dynamics 13: 133–157. DOI: https://doi.org/10.5194/esd-13-133-2022

Collins M., Knutti R., Arblaster J., Dufresne J.L., Fichefet T., Friedlingstein P., Gao X., Gutowski W.J., Johns T., Krinner G., Shongwe M., Tebaldi M.C., Weaver A.J., Wehner M., 2013. Long-term climate change: Projections, commitments and irreversibility. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 1029–1136. DOI: https://doi.org/10.1017/CBO9781107415324.024

Czyryca P., Tylkowski J., Winowski M., Hojan M., 2021. Individual natural environment features and landscape and tourist values of the Cephalantero rubrae-Fagetum habitat on Wolin Island. Geography and Tourism 9(1): 7–20.

Dahl E., 1998. The phytogeography of Northern Europe (British Isles, Fennoscandia and Adjacent Areas). Cambridge University Press, New York. DOI: https://doi.org/10.1017/CBO9780511565182

De Martonne E., 1926. Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorologie 2: 449–458. DOI: https://doi.org/10.3406/geo.1926.8506

Dudzińska-Nowak J., Wężyk P., 2014. Volumetric changes of a soft cliff coast 2008–2012 based on DTM from airborne laser scanning (Wolin Island, southern Baltic Sea). Journal of Coastal Research 70(1): 59–64. DOI: https://doi.org/10.2112/SI70-011.1

Ellenberg H., 1988. Vegetation ecology of central Europe. 4th ed. Cambridge University Press, Cambridge-New York-New Rochelle-Melbourne-Sydney.

Führer E., Horváth L., Jagodics A., Machon A., Szabados I., 2011. Application of a new aridity 360 index in Hungarian forestry practice. Idöjárás 115(3): 205–216.

Grinsted A., 2015. Projected change – Sea level. In: BACC II Author Team (ed.), Second assessment of climate change for the Baltic Sea basin, Regional Climate Studies. Springer International Publishing, Cham: 253–263. DOI: https://doi.org/10.1007/978-3-319-16006-1_14

Hieronymus M., Kalén O., 2020. Sea-level rise projections for Sweden based on the new IPCC special report: The ocean and cryosphere in a changing climate. Ambio 49: 1587–1600. DOI: https://doi.org/10.1007/s13280-019-01313-8

Hojan M., 2009. Aeolian processes on the cliffs of Wolin Island. Quaestiones Geographicae 28A(2): 39–46.

Hojan M., Tylkowski J., Rurek M., 2018. Hydrometeorological conditions for the occurrence of Aeolian processes on the Southern Baltic coast in Poland. Water 10(12): 1745. DOI: https://doi.org/10.3390/w10121745

IPCC [Intergovernmental Panel on Climate Change], 2022. Annex I: Global to regional atlas (Pörtner H.-O., Alegría A., Möller V., Poloczanska E.S., Mintenbeck K., Götze S. (eds.)). In: Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change [Pörtner H.-O., Roberts D.C., Tignor M., Poloczanska E.S., Mintenbeck K., Alegría A., Craig M., Langsdorf S., Löschke S., Möller V., Okem A., Rama B. (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA: 2811–2896. DOI: https://doi.org/10.1017/9781009325844.028

ISOK project [Informatyczny System Osłony Kraju], 2011. Geoportal. Online: https://mapy.geoportal.gov.pl (accessed: 10 September 2021).

Kondracki J., 1998. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.

Kostrzewski A., 1987. Morfosystem wybrzeży klifowych Wyspy Wolin – uwagi metodyczne. Sprawozdania PTPN 104.

Kostrzewski A., Zwoliński Z., 1986a. Operation and morphologic effects of present-day morphogenetics processes modelling the cliffed coast of Wolin Island, N.W. Poland. In: Gardiner V. (ed.), International geomorphology Part I. John Wiley and Sons, Chichester: 1231–1252.

Kostrzewski A., Zwoliński Z., 1986b. Kartowanie morfologiczne współczesnego systemu denudacyjnego wybrzeży klifowych Wyspy Wolin: propozycja sygnatury. Sprawozdania PTPN 103: 49–52.

Kostrzewski A., Zwoliński Z., 1987a. Formy erozyjnej i akumulacyjnej działalności wód na wybrzeżu klifowym Wyspy Wolin (propozycja klasyfikacji). Sprawozdania PTPN 104: 72–75.

Kostrzewski A., Zwoliński Z., 1987b. Zróżnicowanie ruchów masowych i form z nimi związanych na wybrzeżu klifowym Wyspy Wolin (propozycja klasyfikacji). Sprawozdania PTPN 105: 75–79.

Kostrzewski A., Zwoliński Z., 1987c. Operation and morphologic effects of present-day morphogenetic processes modelling the cliffed coast of Wolin Island, NW Poland. In: International Geomorphology 1986. Proc. 1st conference. Vol. 1: 1231–1252.

Kostrzewski A., Zwoliński Z., 1988. Morphodynamics of the cliffed coast, Wolin Island. Geographia Polonica 55: 69–81.

Kostrzewski A., Zwoliński Z., 1994. Bałtyckie wybrzeże klifowe Wyspy Wolin – stan aktualny, tendencje rozwoju. Klify I: 81–97.

Kostrzewski A., Zwoliński Z., 1995. Present-day morphodynamics of the cliff coasts of Wolin Island. Journal of Coastal Research 22: 293–303.

Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., 2017. Zróżnicowanie przestrzenne i zmienność czasowa morfodynamiki wybrzeża klifowego wyspy Wolin w latach 1984-2016. In: Kostrzewski A., Winowski M. (eds.), Geoekosystem Wybrzeży Morskich 3, Poznań – Biała Góra: 133–142.

Kostrzewski A., Zwoliński Z., Winowski M., Tylkowski J., Samołyk M., 2015. Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Sounthern Baltic). Baltica 28(2): 109–120. DOI: https://doi.org/10.5200/baltica.2015.28.10

Kożuchowski K., 2013. Saldo promieniowania i higroklimatyczne warunki wegetacji w Polsce. Przegląd Geofizyczny 1-2: 41–54.

Łabuz T.A., 2004. Coastal dune development under natural and human influence on Swina Gate Barrier (Polish coast of Pomeranian Bay). In: Schernewski G., Löser N. (eds.), Managing the Baltic Sea. Coastline reports 2: EUCC – The Coastal Union, Warnemünde: 129–138.

Łabuz T.A., 2013. Polish coastal dunes – affecting factors and morphology. Landform Analysis 22: 33–59. DOI: https://doi.org/10.12657/landfana.022.004

Łabuz T.A., 2015. Metody badań terenowych w analizie zmian ukształtowania akumulacyjnych odcinków wydm nadmorskich polskiego wybrzeża. Landform Analysis 28: 45–60. DOI: https://doi.org/10.12657/landfana.028.004

Łabuz T.A., 2022. Storm surges versus shore erosion: 21 years (2000–2020) of observations on the Świna Gate Sandbar (Southern Baltic Coast). Quaestiones Geographicae 41(3): 5–31. DOI: https://doi.org/10.2478/quageo-2022-0023

Łabuz T.A., Grunewald R., Bobykina V., Chubarenko B., Česnulevičius A., Bautrėnas A., Morkūnaitė R., Tõnisson H., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaestiones Geographicae 37(1): 47–71. DOI: https://doi.org/10.2478/quageo-2018-0005

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Marchetti M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259(4): 698–709. DOI: https://doi.org/10.1016/j.foreco.2009.09.023

Matuszkiewicz W., 2014. Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN, Warszawa.

Mayr H., 1909. Waldbau auf naturgesetzlicher Grundlage. Verlag Paul Perey, Berlin. DOI: https://doi.org/10.5962/bhl.title.29675

Meier J.E.M., Kniebusch M., Dieterich C., Gröger M., Zorita R., Elmgren R., Myrberg K., Ahola M.P., Bartosova A., Bonsdorff E., Börgel F., Capell R., Carlén I., Carlund T., Carstensen J., Christensen O.B., Dierschke V., Frauen C., Frederiksen M., Gaget E., Galatius A., Haapala J.J., Halkka A., Hugelius G., Hünicke B., Jaagus J., Jüssi M., Käyhkö J., Kirchner N., Kjellström E., Kulinsk, K., Lehmann A., Lindström G., May W., Miller P.A., Mohrholz V., Müller-Karulis B., Pavón-Jordán D., Quante M., Reckermann M., Rutgersson A., Savchuk O.P., Stendel M., Tuomi L., Viitasalo M., Weisse R., Zhang W., 2022a. Climate change in the Baltic Sea region: A summary. Earth System Dynamics 13: 457–593. DOI: https://doi.org/10.5194/esd-13-457-2022

Meier J.E.M., Dieterich C., Gröger M., Dutheil C., Börgel F., Safonova K., Christensen O.B., Kjellström E., 2022b. Oceanographic regional climate projections for the Baltic Sea until 2100. Earth System Dynamics 13: 159–199. DOI: https://doi.org/10.5194/esd-13-159-2022

Nauels A., Meinshausen M., Mengel M., Lorbacher K., Wigley T.M.L., 2017. Synthesizing long-term sea level rise projections – the MAGICC sea level model. Geosciences Model Development 10: 2495–2524. DOI: https://doi.org/10.5194/gmd-10-2495-2017

Nikulin G., Kjellström E., Hansson U., Jones C., Strandberg G., Ullerstig A., 2011. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A: 41–55. DOI: https://doi.org/10.1111/j.1600-0870.2010.00466.x

Orlowsky B., Seneviratne S.I., 2012. Global changes in extreme events: Regional and seasonal dimension. Climate Change 116: 669–696. DOI: https://doi.org/10.1007/s10584-011-0122-9

Ozolinčius R., Lekevičius E., Stakėna V., Galvonaitė A., Samas A., Valiukas D., 2014. Lithuanian forests and climate change: Possible effects on tree species composition. European Journal of Forest Research 133: 51–60. DOI: https://doi.org/10.1007/s10342-013-0735-9

Paprotny D., Terefenko P., 2017. New estimates of potential impacts of sea level riseand coastal floods in Poland. Natural Hazards 85:1249–1277. DOI: https://doi.org/10.1007/s11069-016-2619-z

Paterson S.S., 1956. The forest area of the world and its potential productivity. Royal University of Göteborg. Göteborg.

Piotrowska H., 1955. Zespoły leśne wyspy Wolin. Prace Komisji Biologicznej PTPN 16(5): 3–169.

Piotrowska H., 1979. Specific aspects of the cliff – Flora of the Wolin Island. Fragmenta Floristica et Geobotanica 25(1): 17–37.

Piotrowska H., 1993. Buczyna storczykowa wzdłuż nadmorskiego klifu na wyspie Wolin (północno-zachodnia Polska). Zeszyty Naukowe UG Biologia 10: 5–29.

Piotrowska H., 2003. Zróżnicowanie i dynamika nadmorskich lasów i zarośli w Polsce. Bogucki Wydawnictwo Naukowe, Poznań–Gdańsk.

Popkiewicz M., Kardaś A., Malinowski Sz., 2018. Nauka o klimacie. Wydawnictwo Nieoczywiste, Warszawa.

Prusinkiewicz Z., 1971. Naspy przyklifowe – nowy typ gleb morskiego pobrzeża. Zeszyty Naukowe UMK, Geogr. 8: 133–157.

Räisänen J., 2017. Future climate change in the Baltic Sea region and environmental impacts. Oxford Research Encyclopedias, Climate Sciences. DOI: https://doi.org/10.1093/acrefore/9780190228620.013.634

Rutgersson A., Kjellström E., Haapala J., Stendel M., Danilovich I., Drews M., Jylhä K., Kujala P., Larsén X.G., Halsnæs K., Lehtonen I., Luomaranta A., Nilsson E., Olsson T., Särkkä J., Tuomi L., Wasmund N., 2022. Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics 13: 251–301. DOI: https://doi.org/10.5194/esd-13-251-2022

Satmari A., (n.d.). Lucrari practice de biogeografie (Practical applications of biogeography). Online: http://www.academia.edu/9909429/05_indici_ecometrici (accessed: 20 December 2019).

Siedlecki M., 2018. Variability of hygro-climatic conditions of forest vegetation in Poland during the period of 1951–2015. Leśne Prace Badawcze 79(2): 139–146. DOI: https://doi.org/10.2478/frp-2018-0015

Smith B., Aasa A., Ahas R., Blenckner T., Callaghan T.V., de Chazal J., Wolf A., 2008. Climate-related change in terrestrial and freshwater ecosystems. In: BACC Author Team. (ed.), Assessment of climate change for the Baltic Sea basin. Springer Verlag, Berlin: 221–238. DOI: https://doi.org/10.1007/978-3-540-72786-6_4

Stojanovic D., Kržic A., Matovic B., Orlovic S., Duputie A., Djurdjevic V., Galic Z., Stojnic S., 2013. Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology 176: 94–103. DOI: https://doi.org/10.1016/j.agrformet.2013.03.009

Stramska M., Chudziak N., 2013. Recent multiyear trends in the Baltic Sea level. Oceanologia 55: 319–337. DOI: https://doi.org/10.5697/oc.55-2.319

Sykes M.T., Prentice I.C., 1996. Climate change, tree species distributions and forest dynamics: A case study in the mixed conifer/northern hardwoods zone of northern Europe. Climatic Change 34: 161–177. DOI: https://doi.org/10.1007/BF00224628

Tylkowski J., 2013. Temporal and spatial variability of air temperature and precipitation at the Polish coastal zone of the Southern Baltic Sea. Baltica 26(1): 79–90. DOI: https://doi.org/10.5200/baltica.2013.26.09

Tylkowski J., 2014. Conditions and rate of extreme dunes abrasion at the Pomeranian Bay. Landform Analysis 27: 45–54.

Tylkowski J., 2015a. The variability of climatic vegetative seasons and thermal resources at the Polish Baltic Sea coastline in the context of potential composition of coastal forest associations. Baltic Forestry 21(1): 73–82.

Tylkowski J., 2015b. Conditions and rate of extreme dunes abrasion at the Pomeranian Bay. Landform Analysis 27: 33–42. DOI: https://doi.org/10.12657/landfana.027.004

Tylkowski J., 2018. Hydrometeorologiczne uwarunkowania erozji wybrzeża klifowego wyspy Wolin. Przegląd Geograficzny 90: 111–135. DOI: https://doi.org/10.7163/PrzG.2018.1.6

Tylkowski J., Hojan M., 2018. Threshold values of extreme hydrometeorological events on the Polish Baltic coast. Water 10(10): 1337. DOI: https://doi.org/10.3390/w10101337

Tylkowski J., Winowski M., Hojan M., Czyryca P., Samołyk M., 2021. Influence of hydrometeorological hazards and sea coast morphodynamics on development of Cephalanthero rubrae-Fagetum (Wolin island, the southern Baltic Sea). Natural Hazards Earth System Sciences 21: 363–374. DOI: https://doi.org/10.5194/nhess-21-363-2021

Weisse R., Dailidienė I., Hünicke B., Kahma K., Madsen K., Omstedt A., Parnell K., Schöne T., Soomere T., Zhang W., Zorita E., 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth System Dynamics 12: 871–898. DOI: https://doi.org/10.5194/esd-12-871-2021

Winowski M., 2015. Aktywność procesów osuwiskowych na wybrzeżu klifowym wyspy Wolin w warunkach oddziaływania zdarzeń hydrometeorologicznych o wysokim potencjale morfogenetycznym (Zatoka Pomorska – Bałtyk Południowy). Landform Analysis 28: 87–102. DOI: https://doi.org/10.12657/landfana.028.007

Winowski M., 2020. Monitoring przekształceń rzeźby klifu piaszczystego w rocznym cyklu pogodowym (studium przypadku z 2019 r. – wyspa Wolin). In: Olszewski A., Andrzejewska A. (eds.), Aktualny stan i przemiany środowiska przyrodniczego geoekosystemów jako cecha wskaźnikowa zmian klimatu. Bogucki Wydawnictwo Naukowe, Poznań: 79–92.

Winowski M., Kostrzewski A., Tylkowski J., Zwoliński Z., 2019. The importance of extreme processes in the development of the Wolin Island cliffs coast (Pomeranian Bay – Southern Baltic). In: Proceedings international scientific symposium new trends in geography, Ohrid: 99–108. DOI: https://doi.org/10.37658/procgeo1999w

Winowski M., Tylkowski J., Hojan M., 2022. Assessment of moraine cliff spatio-temporal erosion on Wolin Island using ALS data analysis. Remote Sensing 14: 3115. DOI: https://doi.org/10.3390/rs14133115

Wolski T., Wiśniewski B., Giza A., Kowalewska-Kalkowska H., Boman H., Grabbi-Kaiv S., Hammarklint T., Holfort J., Lydeikaite Z., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanology 56: 259–290. DOI: https://doi.org/10.5697/oc.56-2.259