Effect of regional baric systems on the occurrence of bi- oclimatic conditions in Poland
PDF

Keywords

bioclimatic conditions
UTCI
atmospheric circulation
Poland

How to Cite

Tomczyk, A. M., Bednorz, E., Szyga-Pluta, K., & Owczarek, M. (2023). Effect of regional baric systems on the occurrence of bi- oclimatic conditions in Poland. Quaestiones Geographicae, 42(1), 161–177. https://doi.org/10.14746/quageo-2023-0011

Abstract

The present study concerns the determination of the characteristics of bioclimatic conditions, as well as the synoptic situations related to the occurrence of thermal stress conditions, in Poland. The study was based on daily data obtained from the Institute of Meteorology and Water Management – National Research Institute from the period 1966–2020 for 37 synoptic stations in Poland. Based on the obtained data, values of the Universal Thermal Climate Index (UTCI) were calculated. The occurrence of heat stress increases from the north to the south, corresponding with the variability of influx of solar radiation, and is modified by factors at a smaller spatial scale. The results of this paper evidently point to the cooling effect of the waters of the Baltic Sea. In circulation conditions favouring strong and very strong heat stress, e.g. in two of the designated circulation types (T1 and T2), the occurrence of an expansive high-pressure ridge in the Atlantic-European area is typical, stretching from the region of the Azores High towards the north- east, with a secondary high developed within its boundaries. In the third of the designated circulation types (T3), the high-pressure area extends from the Azores eastwards, reaching the Black Sea. Each of the three circulation patterns associated with the unfavourable biometeorological conditions of very strong and extreme cold stress in Poland is characterised by strong pressure centres formed in the Euroatlantic region, triggering the airflow from the northern (T4) or eastern (T5, T6) sector.

https://doi.org/10.14746/quageo-2023-0011
PDF

Funding

This work was supported by the National Science Centre, Poland (grant number UMO-2020/37/B/ST10/00217)

References

Bartoszek K., Wereski S., Krzyżewska A., Dobek M., 2017. The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography. Physical Geography Series 12: 41–49. . DOI: https://doi.org/10.1515/bgeo-2017-0004

Bartzokas A., Lolis C.J., Kassomenos P.A., McGregor G.R., 2013. Climatic characteristics of summer human thermal discomfort in Athens and its connection to atmospheric circulation. Natural Hazards and Earth System Sciences 13(12): 3271–3279. DOI: https://doi.org/10.5194/nhess-13-3271-2013

Bednorz E., 2011. Synoptic conditions of snow cover occurrence in Central European lowlands. International Journal of Climatology 31: 1108–1118. DOI: https://doi.org/10.1002/joc.2130

Bielec-Bąkowska Z., 2014. Silne wyże nad Europą. Wydawnictwo Uniwersytetu Śląskiego Katowice. http://hdl.handle.net/20.500.12128/2944.

Błażejczyk A., Błażejczyk K., Baranowski J., Kuchcik M., 2018. Heat stress mortality and desired adaptation responses of healthcare system in Poland. International Journal of Biometeorology 62(3): 307–318. DOI: https://doi.org/10.1007/s00484-017-1423-0

Błażejczyk K., 2006. Climate and bioclimate of Poland. In: Degórski M. (ed.), Natural and human environment of Poland. A geographical overview. Polish Academy of Sciences Institute of Geography and Spatial Organization, Polish Geographical Society, Warsaw: 31–48.

Błażejczyk K., 2013. Distribution of Universal Thermal Climate Index (UTCI) in Warsaw. Geographia Polonica 86(1): 79–80. DOI: https://doi.org/10.7163/GPol.2013.9

Błażejczyk K., Baranowski J., Błażejczyk A., 2014a. Heat stress and occupational health and safety – Spatial and temporal differentiation. Miscellanea Geographica – Regional Studies and Development 18(1): 61–67. DOI: https://doi.org/10.2478/mgrsd-2014-0011

Błażejczyk K., Błażejczyk A., 2014. Assessment of bioclimatic variability on regional and local scales in Central Europe using UTCI”. Scientific Annales of “Alexandru Ioan Cuza” University of Iasi – Geography Series 60(1): 67–82.

Błażejczyk K., Błażejczyk M., 2006. BioKlima ver.2.6. Polish Academy of Sciences, http://www.igipz.pan.pl/Bioklima-zgik.html.

Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz, B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56(3): 515–535. DOI: https://doi.org/10.1007/s00484-011-0453-2

Błażejczyk K., Idzikowska D., Błażejczyk A., 2013b. Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk. Papers on Global Change 20: 47–62. DOI: https://doi.org/10.2478/igbp-2013-0002

Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B., 2013a. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica 86(1): 5–10. DOI: https://doi.org/10.7163/GPol.2013.1

Błażejczyk K., Kuchcik M., Błażejczyk A., Milewski P., Szmyd J., 2014b. Assessment of urban thermal stress by UTCI – experimental and modelling studies: An example from Poland. Die Erde 145(1–2): 16–33.

Błażejczyk K., Kunert A., 2011. Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce. Monografie Instytutu Geografii i Przestrzennego Zagospodarowania PAN 13. Polska Akademia Nauk, Instytut Geografii i Przestrzennego Zagospodarowania im, Warszawa. Stanisława Leszczyckiego. Wyd. 2.

Błażejczyk K., Nejedlik P., Skrynyk O., Halaś A., Skrynyk O., Baranowski J., Mikulova K., 2020. Thermal stress in the northern Carpathians and air circulation. Miscellanea Geographica – Regional Studies on Development 24(3): 147–160. DOI: https://doi.org/10.2478/mgrsd-2020-0022

Błażejczyk K., Twardosz R., 2010. Long-term changes of bioclimatic conditions in Cracow (Poland). In: Przybylak R. (ed.), The Polish climate in the European context: An historical overview. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-90-481-3167-9_10

Błażejczyk K., Twardosz R., Kunert A., 2003. Zmienność warunków biotermicznych w Krakowie w XX wieku na tle wahań cyrkulacji atmosferycznej. In: Błażejczyk K., Krawczyk B., Kuchcik M. (eds.), Postępy w badaniach klimatycznych i bioklimatycznych. IGiPZ PAN, Warszawa, Prace Geograficzne 188: 233–246.

Błażejczyk K., Twardosz R., Wałach P., Czarnecka K., Błażejczyk A., 2022. Heat strain and mortality effects of prolonged Central European heat wave – An example of June 2019 in Poland. International Journal of Biometeorology 66: 149–161. DOI: https://doi.org/10.1007/s00484-021-02202-0

Brecht B.M., Schädler G., Schipper J.W., 2020. UTCI climatology and its future change in Germany–an RCM ensemble approach. Meteorologische Zeitschrift 29(2): 97–116. DOI: https://doi.org/10.1127/metz/2020/1010

Bröde P., Fiala D., Błażejczyk K., Holmer I., Jendritzky G., Kampmann B., Tinz B., Havenith G., 2012. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 56(3): 481–449. DOI: https://doi.org/10.1007/s00484-011-0454-1

Bröde P., Krüger E.L., Fiala D., 2013. UTCI: Validation and practical application to the assessment of urban outdoor thermal comfort. Geographia Polonica 86(1): 11–20. DOI: https://doi.org/10.7163/GPol.2013.2

Brunner L., Hegerl G.C., Steiner A.K., 2017. Connecting atmospheric blocking to European temperature extremes in spring. Journal of Climate 30(2): 585–594.. DOI: https://doi.org/10.1175/JCLI-D-16-0518.1

Brunner L., Schaller N., Anstey J., Sillmann J., Steiner A.K., 2018. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophysical Research Letters 45: 6311–6320. DOI: https://doi.org/10.1029/2018GL077837

Bryś K., Ojrzyńska H., 2016. Bodźcowość warunków biometeorologicznych we Wrocławiu. Acta Geographica Lodziensia 104: 193–200.

Dayan U., Tubia A., Levy I., 2012. On the importance of synoptic classification methods with respect to environmental phenomena. International Journal of Climatology 32: 681–694. DOI: https://doi.org/10.1002/joc.2297

Esteban P., Jones P.D., Martin-Vide J., Mases M., 2005. Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees. International Journal of Climatology 25: 319–329. DOI: https://doi.org/10.1002/joc.1103

Farajzadeh H., Saligheh M., Alijani B., Matzarakis A., 2015. Comparison of selected thermal indices in the north-west of Iran. Natural Environment Change 1(1): 1–20.

Fiala D., Lomas K.J., Stohrer M., 1999. A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Journal of Applied Physiology 87: 1957–1972. DOI: https://doi.org/10.1152/jappl.1999.87.5.1957

Fiala D., Lomas K.J., Stohrer M., 2001. Computer 253 prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology 45(3): 143–159. DOI: https://doi.org/10.1007/s004840100099

Ge Q., Kong Q., Xi J., Zheng J., 2016. Application of UTCI in China from tourism perspective. Theortical and Applied Climatology 128: 551–561. DOI: https://doi.org/10.1007/s00704-016-1731-z

Głogowski A., Bryś K., Bryś T., 2020. Influence of NAO on forming the UTCI index in Kłodzko. Theortical and Applied Climatology 142: 1555–1567. DOI: https://doi.org/10.1007/s00704-020-03340-y

Idzikowska D., 2011. Relationship between mortality and UTCI in Paris, Rome, Warsaw and Budapest. Prace i Studia Geograficzne 47: 311–318.

Kalkstein L.S., Tan G., Skindlov J.A., 1987. An evaluation of three Clustering procedures for use in synoptic climatological classification. Journal of Climatology and Applied Meteorology 26: 717–730. DOI: https://doi.org/10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2

Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds R., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society 77: 437–471. DOI: https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Katavoutas G., Flocas H.A., 2018. Universal Thermal Climate Index (UTCI) and synoptic circulation patterns over the metropolitan city of Athens, Greece. Global NEST Journal 20(3): 477–487. DOI: https://doi.org/10.30955/gnj.002556

Kažys J., Malūnavičiūtė I., 2015. The evaluation of summer beaching conditions on the Baltic sea coast using the UTCI index. The International Journal of Climate Change: Impacts and Responses 7(4): 41–59. DOI: https://doi.org/10.18848/1835-7156/CGP/v07i04/37254

Kolendowicz L., Półrolniczak M., Szyga-Pluta K., Bednorz E., 2018. Human-biometeorological conditions in the southern Baltic coast based on the Universal Thermal Climate Index (UTCI). Theoretical and Applied Climatology 134: 363–379. DOI: https://doi.org/10.1007/s00704-017-2279-2

Koźmiński C., Michalska B., 2019. Ocena bioklimatycznych warunków rekreacji i turystyki w strefie polskiego Wybrzeża Bałtyku na podstawie wskaźnika UTCI. Przegląd Geograficzny 91(2): 113–126. DOI: https://doi.org/10.7163/PrzG.2019.2.7

Krzyżewska A., Wereski S., Demczuk P., 2020. Biometeorological conditions during an extreme heatwave event in Poland in August 2015. Weather 75(6): 183–189. DOI: https://doi.org/10.1002/wea.3497

Krzyżewska A., Wereski S., Dobek M., 2021. Summer UTCI variability in Poland in twenty-first century. International Journal of Biometeorology, Special Issue: UTCI – 10 Years of Applications 65: 1497–1513. DOI: https://doi.org/10.1007/s00484-020-01965-2

Kuchcik M., 2021. Mortality and Thermal environment (UTCI) in Poland – long-term, multi-city study. International Journal of Biometeorology 65: 1529–1541. DOI: https://doi.org/10.1007/s00484-020-01995-w

Kuchcik M., Błażejczyk K., Halaś A., 2021. Changes in bioclimatic indices. In: Falarz M. (ed.), Climate change in Poland. Springer Climate, Springer Nature, Switzerland: 471–491. DOI: https://doi.org/10.1007/978-3-030-70328-8_19

Lindner K., 2011. Assessment of sensible climate in Warsaw using UTCI. Prace i Studia Geograficzne 47: 285–291.

Lindner-Cendrowska K., 2013. Assessment of bioclimatic conditions in cities for tourism and recreational purposes (A Warsaw case study). Geographia Polonica 86(1): 55–66. DOI: https://doi.org/10.7163/GPol.2013.7

Lorenc H., 1996. Struktura i zasoby energetyczne wiatru w Polsce. Materiały Badawcze IMGW Meteorologia 25, Warszawa.

Lupo A.R., 2021. Atmospheric blocking events: A review. Annales of the New York Academy of Sciences 1504(1): 5–24. DOI: https://doi.org/10.1111/nyas.14557

Mann H.B., 1945. Nonparametric tests against trend. Econometrica 13(3): 245–259. DOI: https://doi.org/10.2307/1907187

Matzarakis A., Muthers S., Rutz F., 2014. Application and comparison of UTCI and PET in temperate climate conditions. Finisterra 49(98): 21–31. DOI: https://doi.org/10.18055/Finis6453

Matzarakis A., Nastos P.T., 2011. Human-biometeorological assessment of heat waves in Athens. Theoretical and Applied Climatology 105(1–2): 99–106. DOI: https://doi.org/10.1007/s00704-010-0379-3

Mąkosza A., 2013. Bioclimatic conditions of the Lubuskie Voivodeship. Geographia Polonica 86(1): 37–46. DOI: https://doi.org/10.7163/GPol.2013.5

Milewski P., 2013. Application of the UTCI to the local bioclimate of Poland’s Ziemia Kłodzka region. Geographia Polonica 86(1): 47–54. DOI: https://doi.org/10.7163/GPol.2013.6

Miszuk B., 2021. Multi-annual changes in heat stress occurrence and its circulation conditions in the polish–Saxon border region. Atmosphere 12: 163. DOI: https://doi.org/10.3390/atmos12020163

Nastos P.T., Matzarakis A., 2012. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology 108(3–4): 591–599. DOI: https://doi.org/10.1007/s00704-011-0555-0

Nidzgorska-Lencewicz J., 2015. Variability of human-biometerological conditions in Gdańsk. Polish Journal of Environmental Studies 24(1): 215–226. DOI: https://doi.org/10.15244/pjoes/26116

Nidzgorska-Lencewicz J., Mąkosza J., 2013. Assessment of bioclimatic conditions within the area of Szczecin agglomeration. Meteorologische Zeitschrift 22(5): 615–626. DOI: https://doi.org/10.1127/0941-2948/2013/0451

Novak M., 2013. Use of the UTCI in the Czech Republic. Geographia Polonica 86(1): 21–28. DOI: https://doi.org/10.7163/GPol.2013.3

Nowosad M., Rodzik B., Wereski S., Dobek M., 2013. The UTCI index in Lesko and Lublin and its circulation determinants. Geographia Polonica 86(1): 29–36. DOI: https://doi.org/10.7163/GPol.2013.4

Okoniewska M., 2021. Daily and seasonal variabilities of thermal stress (based on the UTCI) in air masses typical for Central Europe: An example from Warsaw. International Journal of Biometeorology 65: 1543–1552. DOI: https://doi.org/10.1007/s00484-020-01997-8

Okoniewska M., Więcław M., 2013. Zmienność wieloletnia warunków bioklimatycznych w II połowie XX wieku w Polsce w godzinach okołopołudniowych na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Journal of Health Sciences 3(15): 116–131.

Owczarek M., 2019. The influence of large-scale factors on the heat load on human beings in Poland in the summer months. Theoretical and Applied Climatology 137: 855–869. DOI: https://doi.org/10.1007/s00704-018-2633-z

Owczarek M., 2021. The influence of air temperature diversity in Central Europe on the occurrence of very strong and extreme cold stress in Poland in winter months. Geographia Polonica 94(2): 251–266. DOI: https://doi.org/10.7163/GPol.0204

Owczarek M., Marosz M., Kitowski M., 2019. The influence of atmospheric circulation on the occurrence of heat stress on human beings on polish coast of the Baltic Sea. In: Kolendowicz L., Bednorz E., Tomczyk A.M. (eds.), Climate variability in Poland and Europe and its circulation conditions. Studia i Prace z Geografii 77: 135–156.

Owczarek M., Tomczyk A.M., 2022. Impact of atmospheric circulation on the occurrence of very strong and extreme cold stress in Poland. Quaestiones Geographicae 41(3): 111–126. DOI: https://doi.org/10.2478/quageo-2022-0028

Park S., Tuller S.E., Jo M., 2014. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning 125: 146–155. DOI: https://doi.org/10.1016/j.landurbplan.2014.02.014

Pecelj M., Błażejczyk A., Vagić N., Ivanović P., 2021. The assessment of human bioclimate of Vranje health resort (Serbia) based on Universal Thermal Climate Index (UTCI) with the focus on extreme biothermal conditions. Geographia Polonica 94(2): 201–222. DOI: https://doi.org/10.7163/GPol.0201

Pfahl S., 2014. Characterising the relationship between weather extremes in Europe and synoptic circulation features. Natural Hazards and Earth System Sciences 14: 1461–1475. . DOI: https://doi.org/10.5194/nhess-14-1461-2014

Pfahl S., Wernli H., 2012. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophysical Research Letters 39(12): L12807.. DOI: https://doi.org/10.1029/2012GL052261

Porębska M., Zdunek M., 2013. Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001–2011. Meteorolologische Zeitschrift 22(5): 533–540. DOI: https://doi.org/10.1127/0941-2948/2013/0455

Półrolniczak M., Szyga-Pluta K., Kolendowicz L., 2016. Bioklimat wybranych miast pasa Pobrzeży Południowobałtyckich na podstawie uniwersalnego wskaźnika obciążenia cieplnego. Acta Geographica Lodziensia 104: 147–161.

Rozbicka K., Rozbicki T., 2018. Variablity of UTCI in South Warsaw depending on atmospheric circulation. Theoretical and Applied Climatology 133: 511–520. DOI: https://doi.org/10.1007/s00704-017-2201-y

Rutty M., Scott D., 2014. Thermal range of coastal tourism resort microclimates. Tourism Geographies. The International Journal of Tourism and Space, Place and Environment 16(3): 346–363. DOI: https://doi.org/10.1080/14616688.2014.932833

Świątek M., 2014. Seasonal variability of climatic conditions for tourism and recreation along the southern coast of the Baltic Sea. Bulletin of Geography. Physical Geography Series 7: 57–80. DOI: https://doi.org/10.2478/bgeo-2014-0003

Tomczyk A.M., Bednorz E., 2016. Heat waves in Central Europe and their circulation conditions. International Journal of Climatology 36(2): 770–782. DOI: https://doi.org/10.1002/joc.4381

Tomczyk A.M., Bednorz E., Matzarakis A., 2020. Human-biometeorological conditions during heatwaves in Poland. International Journal of Climatology 40(12): 5043–5055. DOI: https://doi.org/10.1002/joc.6503

Tomczyk A.M., Bednorz E., Sulikowska A., 2019. Cold spells in Poland and Germany and their circulation conditions. International Journal of Climatology 39(10): 4002–4014. DOI: https://doi.org/10.1002/joc.6054

Tomczyk A.M., Owczarek M., 2020. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology 139: 893–905. DOI: https://doi.org/10.1007/s00704-019-02998-3

Urban A., Kyselý J., 2014. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health 11(1): 952–967. DOI: https://doi.org/10.3390/ijerph110100952

Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58: 236–244. DOI: https://doi.org/10.1080/01621459.1963.10500845

Wereski S., Krzyżewska A., Dobek M., 2020. Winter UTCI variability in Poland in the 21st century. Miscellanea Geographica 24(3): 128–137. DOI: https://doi.org/10.2478/mgrsd-2020-0021

Wibig J., 2021. Change of wind. In: Falarz M. (ed.), Climate change in Poland. Springer Climate. Springer, Cham: 391–420. DOI: https://doi.org/10.1007/978-3-030-70328-8_15

Wilks D.S., 1995. Statistical methods in the atmospheric sciences, an introduction. International Geophysics Series 59. Academic Press: 464.

Yarnal B., 1993. Synoptic climatology in environmental analysis. Belhaven Press, London.

Yarnal B., Comrie A.C., Frakes B., Brown D.P., 2001. Developments and prospects in synoptic climatology. International Journal of Climatology 21: 1923–1950. DOI: https://doi.org/10.1002/joc.675

Zare S., Hasheminejad N., Shirvan H.E., Hemmatjo R., Sarebanzadeh K., Ahmadi S., 2018. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes 19: 49–57. DOI: https://doi.org/10.1016/j.wace.2018.01.004

Zare S., Shirvan H.E., Hemmatjo R., Nadri F., Jahani Y., Jamshidzadeh K., Paydar P., 2019. A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather and Climate Extremes 26: 100213. DOI: https://doi.org/10.1016/j.wace.2019.100213

Zschenderlein P., Fink A.H., Pfahl S., Wernli H., 2019. Processes determining heat waves across different European climates. Quarterly Journal of the Royal Meteorological Society 145(724): 2973–2989. DOI: https://doi.org/10.1002/qj.3599