Abstract
This paper presents the results of a study to determine the potential of radar imaging to detect classes of built-up areas defined in the Urban Atlas (UA) spatial database. The classes are distinguished by function and building density. In addition to the reflectance value itself, characteristics such as building density or spatial layout can improve the identification of these classes. In order to increase the classification possibilities and better exploit the potential of radar imagery, a grey-level co-occurrence matrix (GLCM) was generated to analyse the texture of built-up classes. Two types of synthetic-aperture radar (SAR) images from different sensors were used as test data: Sentinel-1 and ICEYE, which were selected for their different setup configurations and parameters. Classification was carried out using the Random Forests (RF) and Minimum Distance (MD) methods. The use of the MD classifier resulted in an overall accuracy of 64% and 51% for Sentinel-1 and ICEYE, respectively. In ICEYE, individual objects (e.g. buildings) are better recognised than classes defined by their function or density, as in UA classes. Sentinel-1 performed better than ICEYE, with its texture images better complementing the features of urban area classes. This remains a significant challenge due to the complexity of urban areas in defining and characterising urban area classes. Automatic acquisition of training fields directly from UA is problematic and it is therefore advisable to independently obtain reference data for built-up area categories.
References
BIP [Biuletyn Informacji Publicznej], 2021. Biuletyn Informacji Publicznej Urzędu Miasta Gdyni. Online: bip.um.gdynia.pl (accessed 8 July 2021).
Braun A., Hochschild V., 2015. Combining SAR and optical data for environmental assessments around refugee camps. Eberhard Karls University, Tybinga. DOI: https://doi.org/10.1553/giscience2015s424
Braun A., Saulgau B., 2019. Radar satellite imagery for humanitarian response. Bridging the gap between technology and application. Eberhard Karls University, Tybinga.
Breinman L., 2001. Random forests. Machine Learning 45(1): 5-32. DOI: https://doi.org/10.1023/A:1010933404324
Breinman L., Cutler A., 2021. Online: https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed 14 February 2021).
Chen C.H., 2008. Image processing for remote sensing. Taylor & Francis Group Boca Raton: 39-106, 341-354.
Chen D., Stow D.A., Gong P., 2004. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. International Journal of Remote Sensing 25(11): 2177-2192. DOI 10.1080/01431160310001618464. DOI: https://doi.org/10.1080/01431160310001618464
Clausi D.A., 2002. An analysis of co-occurrence texture statistics as a function of grey level quantization. Canadian Journal of Remote Sensing 28(1): 45-62. DOI: https://doi.org/10.5589/m02-004
Congalton R.G., Green K., 2009. Assessing the accuracy of remotely sensed data: Principles and practices. 2nd edn. Lewis Publishers, Boca Raton. DOI: https://doi.org/10.1201/9781420055139
Creodias Finder. Online: https://finder.creodias.eu/ (accessed 2 March 2021). DOI: https://doi.org/10.1016/S0262-1762(21)00269-8
Dell’Acqua F., Gamba P., 2003. Texture-based characterisation of urban environments on satellite SAR images. IEEE Transactions on Geoscience and Remote Sensing 41(1): 153-159. DOI: https://doi.org/10.1109/TGRS.2002.807754
Denis M., 2018. Selected issues regarding small compact city – Advantages and disadvantages. Space and Form 34: 151-162. DOI 10.21005/pif.2018.34.C-03. DOI: https://doi.org/10.21005/pif.2018.34.C-03
Eckardt R., Urbazaev M., Salepci N., Pathe C., Schmullius Ch., Woodhouse I., Stewart Ch., 2021. Echoes in Space. Introduction to Radar Remote Sensing. SAR MOOC Manuscript, EO-College.org, ESA, EOS. Friedrich-Schiller-University of Jena. Online: https://eo-college.org/resource/urban_lc/ (accessed 03 September 2021).
GHSL [Global Human Settlement Layer], 2022. Urban footprint. Online: https://ghsl.jrc.ec.europa.eu/ (accessed 19 December 2022).
Giannini M.B., Merola P., Allegrini A., 2012. Texture analysis for urban areas classification in high resolution satellite imagery. Applied Remote Sensing Journal 2(2): 65-71.
Goodman J.W., 1976. Some fundamental properties of speckle. Journal of the Optical Society of America 66(11): 1145-1150. DOI: https://doi.org/10.1364/JOSA.66.001145
Hall-Beyer M., 2017a. GLCM texture: A tutorial v. 3.0. Department of Geography, University of Calgary.
Hall-Beyer M., 2017b. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing 38(5): 1312-1338. DOI: https://doi.org/10.1080/01431161.2016.1278314
Haralick R.M., Shanmugam K., Dinstein I., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3: 610-621. DOI: https://doi.org/10.1109/TSMC.1973.4309314
Herold M., Goldstein N.C., Clarke K.C., 2003. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sensing of Environment 86(3): 286-302. DOI 10.1016/S0034-4257(03)00075-0. DOI: https://doi.org/10.1016/S0034-4257(03)00075-0
Holobâcă I.-H., Ivan K., Alexe M., 2019. Extracting built-up areas from Sentinel-1 imagery using land-cover classification and texture analysis. International Journal of Remote Sensing 40: 8054-8069. DOI: https://doi.org/10.1080/01431161.2019.1608391
Huang X., Zhang T., 2020. Morphological building index (MBI) and its applications to urban areas. In: Weng Q., Quattrochi D., Gamba P. (eds), Urban remote sensing. 2nd edition Taylor & Francis Group Boca Raton: 33-49.
ICEYE Specification. Online: https://www.iceye.com/satellite-missions (accessed 2 March 2021).
Joelsson S.R., Benediktsson J.A., Sveinsson J.R., 2008. Random forest classification of remote sensing data. In: Chen C.H. (ed.), Image processing for remote sensing. Taylor & Francis Group: 61-78. DOI: https://doi.org/10.1201/9781420066654.ch3
Kamusoko C., 2022. Optical and SAR remote sensing of urban areas. A practical guide. Springer: 71-103. DOI: https://doi.org/10.1007/978-981-16-5149-6
Kupidura P., 2015. Application of image granulometry to classification of satellite images. Publishing House of Warsaw University of Technology, Warsaw.
Kupidura P., 2019. The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery. Remote Sensing 11(10): 1233. DOI 10.3390/rs11101233. DOI: https://doi.org/10.3390/rs11101233
Kupidura P., Uwarowa I., 2017. The comparison of GLCM and granulometry for distinction of different classes of urban area. In: 2017 Joint Urban Remote Sensing Event (JURSE). IEEE. DOI 10.1109/JURSE.2017.7924615. DOI: https://doi.org/10.1109/JURSE.2017.7924615
Lewiński S., Aleksandrowicz S., 2012. Evaluation of usability of texture in identifying basic land cover classes on the satellite images of different resolutions. Archiwum Fotogrametrii, Kartografii i Teledetekcji 23: 229-237.
Mohanaiah P., Sathyanarayana P., GuruKumar L., 2013. Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications 3(5): 1-5.
Molch K., 2009. Radar earth observation imagery for urban area characterizations. JRC Scientific and Technical Reports, European Communities, Luxembourg.
Okwuashi O., Isong M., Eyo E., Eyoh A., Nwanekezie O., Olayinka D.N., Udoudo D.O., Ofem B., 2012. GIS cellular automata using artificial neural network for land use change simulation of Lagos, Nigeria. Journal of Geography and Geology 4(2): 94-101. DOI: https://doi.org/10.5539/jgg.v4n2p94
Park Y., Guldmann J.-M., 2020. Measuring continuous landscape patterns with gray-level co-occurrence matrix (GLCM) indices: An alternative to patch metrics? Ecological Indicators 109: 105802, DOI 10.1016/j.ecolind.2019.105802. DOI: https://doi.org/10.1016/j.ecolind.2019.105802
Pathak V., Dikshit O., 2010. A new approach for finding an appropriate combination of texture parameters for classification. Geocarto International 25: 295-313. DOI: https://doi.org/10.1080/10106040903576195
Richards J.A., 2013. Remote sensing digital image analysis. An introduction, 5th edn. Springer-Verlag Berlin Heidelberg: 247-315, 381-433. DOI: https://doi.org/10.1007/978-3-642-30062-2_11
SDG [Sustainable Development Goals], 2015. Goals/Tasks 11.1.1 and 11.3.1. 2022. Online: https://sdgs.un.org/goals/goal11 (accessed 23 May 2022).
Semenzato A., Pappalardo S.E., Codato D., Trivelloni U., De Zorzi S., Ferrari S., De Marchi M., Massironi M., 2020. Mapping and monitoring urban environment through sentinel-1 SAR data: A case study in the Veneto Region (Italy). ISPRS International Journal of Geo-Information 9: 375. DOI 10.3390/ijgi9060375. DOI: https://doi.org/10.3390/ijgi9060375
Sentinel-1 Specification. Online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/data-formats/safe-specification (accessed 2 March 2021).
Snitkowska E., 2004. Analiza tekstur w obrazach cyfrowych i jej zastosowanie do obrazów angiograficznych – rozprawa doktorska. Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Instytut Automatyki i Informatyki Stosowanej.
Urban Atlas Database. Online: https://land.copernicus.eu/local/urban-atlas (accessed 2 March 2021).
Urban Atlas Guide. Online: https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide (accessed 2 March 2021).
Wellmann T., Haase D., Knapp S., Salbach C., Selsam P., Lausch A., 2018. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecological Indicators 85: 190-203. DOI: https://doi.org/10.1016/j.ecolind.2017.10.029
Yoshioka M., Fujinaka T., Omatu S., 2008. SAR image classification by support vector machine. In: Chen C.H. (ed.), Image processing for remote sensing. Taylor & Francis Group: 341-353. DOI: https://doi.org/10.1201/9781420066654.ch15
Zhang Q, Wang J., 2001. Texture analysis for urban spatial pattern study using SPOT imagery. In: Proceedings IEEE International Geoscience and Remote Sensing Symposium: 2149-2151. 9-13 July 2001, University of New South Wales, Sydney, Australia.
License
Copyright (c) 2023 JOANNA PLUTO-KOSSAKOWSKA, JOANNA GICZAN
This work is licensed under a Creative Commons Attribution 4.0 International License.