Insights into the chemical characteristics of atmospheric aerosols from urban-industrial and rural sites in south-east of Poland during winter
PDF

Keywords

atmospheric aerosol
elemental-organic carbon
industrial emissions
single particle mass spectrometry

How to Cite

Szwed, M., Kozłowski, R., Żukowski, W., Mbengue, S., Suchánková, L., & Prokes, R. (2023). Insights into the chemical characteristics of atmospheric aerosols from urban-industrial and rural sites in south-east of Poland during winter. Quaestiones Geographicae, 42(3), 89–99. https://doi.org/10.14746/quageo-2023-0025

Abstract

This study focusses on a short-term characterisation of atmospheric aerosols from three locations in south- east of Poland with different land use characteristics, population density and sources of pollution (Katowice: urban-industrial; Strzyżowice near Lublin: rural; Kielce: urban). Twenty-four hour PM2.5 and PM10 samples were collected on the quartz filter and their chemical compositions were monitored and measured using OCEC thermo-optical analysis and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). The highest concentrations of PM2.5 and PM10 were measured at the urban-industrial area in Katowice (29.6 µg ∙ m−3 and 31.0 µg ∙ m−3, respectively), whereas the highest organic carbon (OC) and elemental carbon (EC) levels were observed at the Kielce urban site (23.3 ± 4.2 µg and 3.6 ± 0.3 µg, respectively). The lowest values were obtained at the rural site for PM2.5 (10.4 ± 2.7 µg ∙ m−3) and PM10 (11.8 ± 2.7 µg ∙ m−3) and for OC (17.8 ± 1.6 µg) and EC (1.0 ± 0.1 µg). SEM-EDS analysis of samples from Kielce allows identification of internal chemical mixtures of carbon, silicon, calcium, chlorine, sodium and aluminium.

https://doi.org/10.14746/quageo-2023-0025
PDF

Funding

This work was financed by Jan Kochanowski University, project No. SUPB.RN.21.258 and SUPB.RN.23.093. This work was supported by the Ministry of Education, Youth and Sports of CR within the CzeCOS programme, grant No. LM2023048, and the European Regional Development Fund-Project ACTRIS-CZ, grant No. LM2023030.

References

Arndt J., Deboudt K., Anderson A., Blondel A., Eliet S., Flament P., Fourmentin M., Healy R.M., Savary V., Setyan A., Wenger J.C., 2016. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions. Environmental Pollution 210: 9-17. DOI: https://doi.org/10.1016/j.envpol.2015.11.019

Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.-P., 2010. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmospheric Measurement Techniques 3: 79-89. DOI: https://doi.org/10.5194/amt-3-79-2010

Cichowicz R., Wielgosiński G., Fetter W., 2017. Dispersion of atmospheric air pollution in summer and winter season. Environmental Monitoring and Assessment 189(12): 605. DOI: https://doi.org/10.1007/s10661-017-6319-2

Eguiluz-Gracia I., Mathioudakis A.G., Bartel S., Vijverberg S.J.H., Fuertes E., Comberiati P., Cai Y.S., Tomazic P.V., Diamant Z., Vestbo J., Galan C., Hoffmann B., 2020. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 75(9): 2170-2184. DOI: https://doi.org/10.1111/all.14177

Grivas G., Cheristanidis S., Chaloulakou A., Koutrakis P., Mihalopoulos N., 2012. Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosols and Air Quality Reaserch 18(7): 1642-1659. DOI: https://doi.org/10.4209/aaqr.2017.12.0567

GUS (Główny Urząd Statystyczny). Online: https://stat.gov.pl/ (accessed 23 June 2022).

Jóźwiak M.A., Jóźwiak M., 2009. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecological Chemistry and Engineering S 16(3): 323-334.

Kampa M., Castanas E., 2008. Human health effects of air pollution. Environmental Pollution 151(2): 362-367. DOI: https://doi.org/10.1016/j.envpol.2007.06.012

Kim K.W., He Z., Kim Y., 2004. Physicochemical characteristics and radiative properties of Asian dust particles observed at Kwangju, Korea, during the 2001 ACE-Asia intensive observation period. Journal of Geophysical Research 109: 1-15. DOI: https://doi.org/10.1029/2003JD003693

Kozłowski R., 2013. Funkcjonowanie wybranych geoekosystemów Polski w warunkach zróżnicowanej antropopresji na przykładzie gór niskich i pogórza. Landform Analysis 23: 1-150.

Kozłowski R., Szwed M., Żukowski R., 2019. Pine needles as bioindicator of pollution by trace elements from cement-limestone industry in centraleastern Poland. Carpathian Journal of Earth and Environmental Sciences 14: 541-549. DOI: https://doi.org/10.26471/cjees/2019/014/102

Liu H., Yan Y., Chang H., Chen H., Liang L., Liu X., Qiang X., Sun Y., 2019. Magnetic signatures of natural and anthropogenic sources of urban dust aerosol. Atmospheric Chemistry Physics 19: 731-745. DOI: https://doi.org/10.5194/acp-19-731-2019

Mbengue S., Alleman L.Y., Flament P., 2014. Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmospheric Research 135-136: 35-47. DOI: https://doi.org/10.1016/j.atmosres.2013.08.010

Mbengue S., Alleman L.Y., Flament P., 2017. Metal-bearing fine particle sources in a coastal industrialized environment. Atmospheric Research 183: 202-211. DOI: https://doi.org/10.1016/j.atmosres.2016.08.014

Mbengue S., Alleman L.Y., Pascal F., 2015. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environmental Geochemistry and Health 35: 875-889. DOI: https://doi.org/10.1007/s10653-015-9756-2

Mbengue S., Fusek M., Schwarz J., Vodička P., Šmejkalová A.H., Holoubek I., 2018. Four years of highly time resolved measurements of elemental and organic carbon at a rural background site in Central Europe. Atmospheric Environment 182: 335-346. DOI: https://doi.org/10.1016/j.atmosenv.2018.03.056

Obwieszczenie Ministra Klimatu i Środowiska z dnia 12 kwietnia 2021 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Środowiska w sprawie poziomów niektórych substancji w powietrzu, 2021. Dziennik Ustaw poz.845.

Paraschiv L.S., Serban A., Paraschiv S., 2019. Calculation of combustion air required for burning solid fuels (coal/biomass/solid waste) and analysis of flue gas composition. Energy Reports 6: 36-45. DOI: https://doi.org/10.1016/j.egyr.2019.10.016

PCA [Polskie Centrum Akredytacji], 2021. Zakres akredytacji laboratorium badawczego nr AB 1622, Polskie Centrum Akredytacji, Warszawa. Online: https://lmr.ujk.edu.pl/files/Z_AB%201622_zakres_30.08.2021.pdf (accessed 23 June 2022).

Peel J., Haeuber R., Garcia V., Russell A., Neas L., 2012. Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry 114: 121-134. DOI: https://doi.org/10.1007/s10533-012-9782-4

Rolph G., Stein A., Stunder B., 2017. Real-time environmental applications and display system: READY. Environmental Modelling and Software 95: 210-228. DOI: https://doi.org/10.1016/j.envsoft.2017.06.025

Rybiński P., Syrek B., Szwed M., Bradło D., Żukowski W., Marzec A., Śliwka-Kaszyńska M., 2021. Influence of thermal decomposition of wood and wood-based materials on the state of the atmospheric air. Emissions of toxic compounds and greenhouse gases. Energies 14(11): 3247. DOI: https://doi.org/10.3390/en14113247

Seinfeld J.H., 2003. Tropospheric chemistry and composition: Aerosols/particles. Encyclopedia of Atmospheric Sciences 54: 2349-2354. DOI: https://doi.org/10.1016/B0-12-227090-8/00438-3

Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96: 2059-2077. DOI: https://doi.org/10.1175/BAMS-D-14-00110.1

Szramowiat-Sala K., Styszko K., Kistler M., Kasper-Giebl A., Golas A., 2016. Carbonaceous species in atmospheric aerosols from the Krakow area (Malopolska District): Carbonaceous species dry deposition analysis. E3S Web of Conferences 10: 1-8. DOI: https://doi.org/10.1051/e3sconf/20161000092

Szwed M., Kozłowski R., Żukowski W., 2020. Assessment of air quality in the south-western part of the Świętokrzyskie Mountains based on selected indicators. Forests 11(5): 499. DOI: https://doi.org/10.3390/f11050499

Szwed M., Żukowski W., Kozłowski R., 2021. The presence of selected elements in the microscopic image of pine needles as an effect of cement and lime pressure within the region of Białe Zagłębie (Central Europe). Toxics 9(1): 15. DOI: https://doi.org/10.3390/toxics9010015

Turpin B.J., Saxena P., Andrews E., 2000. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmospheric Environment 34(18): 2983-3013. DOI: https://doi.org/10.1016/S1352-2310(99)00501-4

WHO (World Health Organisation), 2021. Particulate matter (PM 2.5 and PM 10), ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. World Health Organisation. Online: https://apps.who.int/iris/handle/10665/345329 (accessed 23 June 2022).