Abstract
On the Holy Cross Mountains (southern Poland), located within the tectonic zone of the Trans-European Suture Zone (TESZ), numerous former quarries exist, including those of Cambrian quarzitic sandstones and sandstones with pyrite veins. This article presents the results of geochemical studies on the waters of the acidic mine pit lake Podwiśniówka (with an area of 1.5 ha and a maximum depth of 7.0 m) conducted in 2018. The tests were carried out in a vertical water column (every 1 m) in the central part of pit lake. The mean concentration of metals/metalloids, determined using inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), was found to form the following sequence in decreasing order: As> Cu> Ni> Co> Cr> Zn> U> Pb> Cd> Tl. With increasing depth, there was a general upwards trend in the concentrations of all the determined elements. In all cases, the average value of the single pollution index in the water column greatly exceeds the very strong level in relation to the geochemical background of surface waters globally (As – above 1250 times). The integrated pollution index for the ten trace elements in the water column increases with depth, and its average value exceeding 250 times the highest reference level. At the same time, the cluster analysis carried out showed the existence of two distinct depth zones in the pit lake: upper (0–4 m) and lower (5–7 m), differing in the scale of the water pollution.
References
Alvarenga P., Guerreiro N., Simões I., Imaginário M.J., Palma P., 2021. Assessment of the environmental impact of acid mine drainage on surface water, stream sediments, and Macrophytes using a battery of chemical and Ecotoxicological indicators. Water 13: 1436. DOI: https://doi.org/10.3390/w13101436
Angelo R.T., Cringan M.S., Chamberlain D.L., Stahl A.J., Haslouer S.G., Goodrich C.A., 2007. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA). Science of the Total Environment 384: 467-496. DOI: https://doi.org/10.1016/j.scitotenv.2007.05.045
Bakhshinezhad H., Bakhtavar E., Afghan A., 2019. Assessment of arsenic concentration along a surface water flow path from Zarshuran gold mine to the downstream residential area. Environmental Earth Sciences 78: 668. DOI: https://doi.org/10.1007/s12665-019-8677-2
Balistrieri L.S., Tempel R.N., Stillings L.L., Shevenell L.A., 2006. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter pit lake, Tuscarora, Nevada, USA. Applied Geochemistry 21: 1184-1203. DOI: https://doi.org/10.1016/j.apgeochem.2006.03.013
Berthelsen A., 1992. Tectonic evolution of Europe. From Precambrian to Variscan Europe. In: Blundall D., Freeman S., Muller S. (eds), A Continent revealed, the European geotravers. Cambridge University Press, Cambridge: 153-164.
Bissen M., Frimmel F.H., 2003. Arsenic a review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochimica et Hydrobiologica 31: 97-107. DOI: https://doi.org/10.1002/aheh.200300485
Boehrer B., von Rohden C., Schultze M., 2017. Physical features of Meromictic Lakes: Stratification and circulation. In: Gulati R.D., Zadereev E.S., Degermendzhi A.G. (eds) Ecology of Meromictic Lakes. Springer, Cham: 15-34. DOI: https://doi.org/10.1007/978-3-319-49143-1_2
Canpolat Ö., Varol M., Okan Ö.Ö., Eriş K.K., Çağlar M., 2020. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environmental Research 190: 110012. DOI: https://doi.org/10.1016/j.envres.2020.110012
Chau N.D., Nowak J., Bialic M., Rajchel L., Czop M., Wróblewski J., 2011. New data on the concentrations of natural radionuclides in the water environment of the Kowary region (Sudetes Mountains, West Poland). Biuletyn PIG 445: 27-34.
Chen H., Teng Y., Lu S., Wang Y., Wang J., 2015. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment 512-513: 143-153. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.025
Choiński A., 2007. Limnologia fizyczna Polski. UAM, Poznań.
Chowdhury T.R., Basu G.K., Mandal B.K., Biswas B.K., Samanta G., Chowdhury U.K., Chanda C.R., Lodh D., Roy S.L., Saha K.C., Roy S., Kabir S., Quamruzzaman Q., Chakraborti D., 1999. Arsenic poisoning in the Ganges delta. Nature 401(6753): 545-547. DOI: https://doi.org/10.1038/44056
Dey M., Akter A., Islam S., Dey S.C., Choudhury T.R., Fatema K.J., Begum B.A., 2021. Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon 7(12): e08625. DOI: https://doi.org/10.1016/j.heliyon.2021.e08625
Dojlido J.R., 1995. Chemia wód powierzchniowych. Ekonomia i Środowisko (Chemistry of surface waters. Economics and Environment). Warsaw.
Drewniak L., Skłodowska A., 2013. Arsenic-transforming microbes and their role in biomining processes. Environmental Science and Pollution Research 20: 7728-7739. DOI: https://doi.org/10.1007/s11356-012-1449-0
Filonowicz P., 1973. Szczegółowa Mapa Geologiczna Polski w skali 1:50 000, ark. 815 (The detailed geological map of Poland scale 1:50 000, sheet 815). Wyd. Geologiczne, Warsaw.
Gafur N.A., Sakakibara M., Sano S., Sera K., 2018. A case study of heavy metal pollution in water of Bone River by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia. Water 10: 1507. DOI: https://doi.org/10.3390/w10111507
Garrels R.M., Thompson M.E., 1960. Oxidation of pyrite by iron sulfate solution. American Journal of Science 258(A): 57-67.
Giloteaux L., Duran R., Casiot C., Bruneel O., Elbaz-Poulichet F., Gorii-Urriza M., 2013. Three-year survey of sulfate-reducing bacteria community structure in Carnoulès acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiology Ecology 83(3): 724-737. DOI: https://doi.org/10.1111/1574-6941.12028
Grawunder A., Merten D., Büchel G., 2014. Origin of middle rare earth element enrichment in acid mine drainage-impacted areas. Environmental Science and Pollution Research 21: 6812-6823. DOI: https://doi.org/10.1007/s11356-013-2107-x
Hrdinka T., Šobr M., Fott J., Nedbalová L., 2013. The unique environment of the most acidified permanently Meromictic Lake in the Czech Republic. Limnologica – Ecology and Management of Inland Waters 43: 417-426. DOI: https://doi.org/10.1016/j.limno.2013.01.005
Islam M.S., Ahmed M.K., Raknuzzaman M., Habibullah-Al-Mamun M., Islam M.K., 2015. Heavy metal pollution in surface water and sediment: A preliminary assessment of an Urban River in a developing country. Ecological Indicators 48015: 282-291. DOI: https://doi.org/10.1016/j.ecolind.2014.08.016
Jiang X., Lu W.X., Zhao H.Q., Yang Q.C., Yang Z.P., 2014. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazards and Earth System Sciences 14: 1599-1610. DOI: https://doi.org/10.5194/nhess-14-1599-2014
Karakas G., Brookland I., Boehrer B., 2003. Physical characteristics of acidic mining lakes. Aquatic Science 65: 297-307. DOI: https://doi.org/10.1007/s00027-003-0651-z
Karim Z., Qureshi B.A., Mumtaz M., 2015. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecological Indicators 48: 358-364. DOI: https://doi.org/10.1016/j.ecolind.2014.08.032
Kefeni K.K., Msagati T.A.M., Mamba B.B., 2017. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production 151: 475-493. DOI: https://doi.org/10.1016/j.jclepro.2017.03.082
Kemper F.H., Bertram H.P., 1991. Metals and their compounds in the environment: Occurrence, analysis, and biological relevance. In: Merian E., Anke M., Ihnat M., Stoeppler M. (eds), Elements and their compounds in the environment: Occurrence, analysis and biological relevance. Weinheim, New York: 1227-1241.
Konon A., 2008. Tectonic subdivision of Poland: Holy Cross Mountains and adjacent areas. Przegląd Geologiczny 56: 921-926.
Kowalczewski Z., Dadlez R., 1996. Tectonics of the Cambrian in the Wiśniówka area (Holy Cross Mts., Central Poland). Geological Quarterly 40: 23-46.
Kowalska J.B., Mazurek R., Gąsiorek M., Zaleski T., 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – A review. Environmental Geochemistry and Health 40: 2395-2420. DOI: https://doi.org/10.1007/s10653-018-0106-z
Kumari B., Kumar V., Sinha A.K., Ahsan J., Ghosh AK., Wang H., DeBoeck G., 2017. Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters 15: 43-64. DOI: https://doi.org/10.1007/s10311-016-0588-9
Lamarche J., Bergerat F., Lewandowski M., Mansy J.L., Świdrowska J., Wieczorek J., 2002. Variscan to Alpine heterogeneous palaeo-stress field above a major Palaeozoic suture in the Carpathian foreland (southeastern Poland). Tectonophysics 357: 55-80. DOI: https://doi.org/10.1016/S0040-1951(02)00362-1
Lian G., Lee X., 2021. Concentrations, distribution, and pollution assessment of metals in River Sediments in China. International Journal of Environmental Research and Public Health 18(13): 6908. DOI: https://doi.org/10.3390/ijerph18136908
Lin L., Li C., Yang W., Zhao L., Liu M., Li Q., Crittenden J.C., 2020. Spatial variations and periodic changes in heavy metals in surface water and sediments of the Three Gorges Reservoir, China. Chemosphere 240: 124837. DOI: https://doi.org/10.1016/j.chemosphere.2019.124837
Liu J., Luo X., Sun Y., Tsang D.C.W., Qi J., Zhang W., Li N., Yin M., Wang J., Lippold H., Chen Y., Sheng G., 2019. Thallium pollution in China and removal technologies for waters: A review. Environment International 126: 771-790. DOI: https://doi.org/10.1016/j.envint.2019.01.076
Liu Y., Yu H., Sun Y., Chen J., 2017. Novel assessment method of heavy metal pollution in surface water: A case study of Yangping River in Lingbao City, China. Environmental Engineering Research 22: 31-39. DOI: https://doi.org/10.4491/eer.2016.015
Luís A.T., Durães N., de Almeida S.F.P., da Silva E.F., 2016. Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess AMD environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). Journal of Environmental Sciences 42: 215-226. DOI: https://doi.org/10.1016/j.jes.2015.07.008
Mazurek R., Kowalska J.B., Gasiorek M., Zadrozny P., Wieczorek J., 2019. Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. Journal of Geochemical Exploration 201: 13-30. DOI: https://doi.org/10.1016/j.gexplo.2019.03.001
McLennan S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2: 2000GC000109. DOI: https://doi.org/10.1029/2000GC000109
Mickiewicz A., Marszałek H., Ciężkowski W., Szumska E., 2015. Złoty Stok – an attempted Sudetic health resort with arsenical waters. Przegląd Geologiczny 63: 940-943.
Migaszewski Z.M., Gałuszka A., 2010. Xenotime from the Podwiśniówka mine pit, Holy Cross Mountains (South-Central Poland). Mineralogia 41: 3-9. DOI: https://doi.org/10.2478/v10002-010-0007-y
Migaszewski Z.M., Gałuszka A., Dołęgowska S., 2016. Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wiśniówka case study, South-Central Poland. Environmental Science and Pollution Research International 23: 24943-24959. DOI: https://doi.org/10.1007/s11356-016-7713-y
Migaszewski Z.M., Gałuszka A., Dołęgowska S., 2018a. Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (South-Central Poland). Applied Geochemistry 95: 45-56. DOI: https://doi.org/10.1016/j.apgeochem.2018.05.015
Migaszewski Z.M., Gałuszka A., Dołęgowska S., 2018b. Arsenic in the Wiśniówka acid mine drainage area (South-Central Poland) – Mineralogy, hydrogeochemistry, remediation. Chemical Geology 493: 491-503. DOI: https://doi.org/10.1016/j.chemgeo.2018.06.027
Migaszewski Z.M., Gałuszka A., Dołęgowska S., 2019. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (South-Central Poland). Environmental Pollution 244: 898-906. DOI: https://doi.org/10.1016/j.envpol.2018.10.106
Migaszewski Z.M., Gałuszka A., Hałas S., Dołęgowska S., Dąbek J., Budzyk I., Starnawska E., 2008. Geochemistry and stable sulfur and oxygen isotope ratios of the Podwiśniówka pit pond water generated by acid mine drainage (Holy Cross Mountains, South-Central Poland. Applied Geochemistry 23: 3620-3634. DOI: https://doi.org/10.1016/j.apgeochem.2008.09.001
Migaszewski Z.M., Gałuszka A., Michalik A., Dołęgowska S., Migaszewski A., Hałas S., Trembaczowski A., 2013. The use of stable sulfur, oxygen and hydrogen isotope ratios as geochemical tracers of sulfates in the Podwiśniówka acid drainage area (South-Central Poland). Aquatic Geochemistry 19: 261-280. DOI: https://doi.org/10.1007/s10498-013-9194-7
Migaszewski Z.M., Gałuszka A., Pasławski P., Starnawska E., 2007a. An influence of pyrite oxidation on generation of unique acid pit water: A case study, Podwiśniówka quarry, Holy Cross Mountains (South-Central Poland). Polish Journal of Environmental Studies 16: 407-421.
Migaszewski Z.M., Starnawska E., Gałuszka A., 2007b. Gorceixite from the Upper Cambrian rocks of the Podwiśniówka mine pit, Holy Cross Mountains (South-Central Poland). Mineralogia Polonica 38: 171-184. DOI: https://doi.org/10.2478/v10002-007-0025-6
Modabberi S., Moore F., 2004. Environmental geochemistry of Zarshuran Au-As deposit, NW Iran. Environmental Geology 46: 796-807. DOI: https://doi.org/10.1007/s00254-004-1065-5
Molenda T., 2011. Natural and anthropogenic changes in physico-chemical properties of water in post-mining aquatic environments. Silesian University, Katowice.
Molenda T., 2018. Impact of a saline mine water discharge on the development of a meromictic pond, the Rontok Wielki reservoir, Poland. Mine Water and the Environment 37: 807-814. DOI: https://doi.org/10.1007/s10230-018-0544-y
Molenda T., Ciupa T., Suligowski R., 2020. The properties of reservoir water in post-mining excavations of Cambrian and Devonian quartzite sandstones (Holy Cross Mountains). Environmental Earth Sciences 79: 310. DOI: https://doi.org/10.1007/s12665-020-09054-8
Molenda T., Kidawa J., 2020. Natural and anthropogenic conditions of the chemical composition of pit lake Waters (Based on Example pit lakes from Central Europe). Mine Water and the Environment 39: 473-480. DOI: https://doi.org/10.1007/s10230-020-00660-3
Moser M., Weisse T., 2011. The most acidified Austrian Lake in comparison to a neutralized mining Lake. Limnologica 41: 303-315. DOI: https://doi.org/10.1016/j.limno.2011.01.002
Nawrocki J., Poprawa P., 2006. Development of Trans-European Suture Zone in Poland: From Ediacaran rifting to Early Palaeozoic accretion. Geological Quarterly 50: 59-76.
Nordstrom D.K., 2011. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry 26: 1777-1791. DOI: https://doi.org/10.1016/j.apgeochem.2011.06.002
Oszkinis-Golon M., Frankowski M., Jerzak L., Pukacz A., 2020. Physicochemical Differentiation of the Muskau arch pit lakes in the light of long-term changes. Water 12: 2368. DOI: https://doi.org/10.3390/w12092368
Pan H., Zhou G., Yang R., Cheng Z., Sun B., 2022. Heavy metals and As in ground water, surface water, and sediments of dexing giant Cu-polymetallic ore cluster, East China. Water 14: 352. DOI: https://doi.org/10.3390/w14030352
Pellicori D.A., Gammons C.H., Poulson S.R., 2005. Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Applied Geochemistry 20: 2116-2137. DOI: https://doi.org/10.1016/j.apgeochem.2005.07.010
Peter A.L.J., Viraraghavan T., 2005. Thallium: A review of public health and environmental concerns. Environment International 31: 493-501. DOI: https://doi.org/10.1016/j.envint.2004.09.003
Pociecha A., Bielańska-Grajner I., Szarek-Gwiazda E., Wilk-Wozniak E., Kuciel H., Walusiak E., 2017. Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland). Mine Water at the Environment 37: 518-527. DOI: https://doi.org/10.1007/s10230-017-0492-y
Qing X., Yutong Z., Shenggao L., 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety 120: 377-385. DOI: https://doi.org/10.1016/j.ecoenv.2015.06.019
Ramstedt M., Carlsson E., Lövgren L., 2003. Aqueous geochemistry in the Udden pit lake, northern Sweden. Applied Geochemistry 18: 97-108. DOI: https://doi.org/10.1016/S0883-2927(02)00068-9
Regulation of the Minister of Infrastructure, 2021. Rozporządzenie w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm jakości dla substancji priorytetowych (Dz. U. 2021 poz. 1475).
Salminen R., (chief-editor), Batista M.J., Bidovec M., Demetriades A., De Vivo B., De Vos W., Duris M., Gilucis A., Gregorauskiene V., Halamic J., Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., Locutura J., Marsina K., Mazreku A., O’Connor P.J., Olsson S.Å., Ottesen R.T., Petersell V., Plant J.A., Reeder S., Salpeteur I., Sandström H., Siewers U., Steenfelt A., Tarvainen T., 2005. Geochemical Atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland, Espoo.
Sánchez-España J., Pamo E.L., Pastor E.S., Ercilla M.D., 2008. The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Applied Geochemistry 23: 1260-1287. DOI: https://doi.org/10.1016/j.apgeochem.2007.12.036
Schultze M., 2013. Limnology of pit lakes. In: Geller W., Schultze M., Kleinmann R., Wolkersdorfer C. (eds), Acidic pit lakes. Environmental science and engineering. Springer, Berlin, Heidelberg: 23-224. DOI: https://doi.org/10.1007/978-3-642-29384-9_3
Stachnik Ł., Korabiewski B., Raczyk J., Łopuch M., Wieczorek I., 2020. Arsenic pollution in Quaternary sediments and water near a former gold mine. Scientific Reports 10: 18458. DOI: https://doi.org/10.1038/s41598-020-74403-3
Taghipour H., Mosaferi M., Armanfar F., Gaemmagami S.J., 2013. Heavy metals pollution in the soils of suburban areas in big cities: a case study. International Journal of Environmental Science and Technology 10: 243-250. DOI: https://doi.org/10.1007/s13762-012-0143-6
Tucci N.J., Gammons C.H., 2015. Influence of copper recovery on the water quality of the acidic Berkeley pit lake, Montana, U.S.A. Environmental Science and Technology 49: 4081-4088. DOI: https://doi.org/10.1021/es504916n
Vanloon G.W., Duffy S.J., 2017. Environmental chemistry: A global perspective. Oxford University Press, New York. DOI: https://doi.org/10.1093/hesc/9780198749974.001.0001
von Gunten K., Warchola T., Donner M.W., Cossio M., Hao W., Boothman C., Lloyd J., Siddique T., Partin C.A., Flynn S.L., Rosaasen A., Konhauser K.O., Alessi D.S., 2018. Biogeochemistry of U, Ni, and As in two meromictic pit lakes at the Cluff Lake uranium mine, northern Saskatchewan. Canadian Journal of Earth Sciences 55(5): 463-474. DOI: https://doi.org/10.1139/cjes-2017-0149
WHO, 2022. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. World Health Organization, Geneva.
Wieczorek J., Baran A., 2022. Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. Journal of Soils and Sediments 22: 559-576. DOI: https://doi.org/10.1007/s11368-021-03091-x
Williams T.M., Smith B., 2000. Hydrochemical characterization of acute acid mine drainage at Iron Duke mine, Mazowe, Zimbabwe. Environmental Geology 39: 272-278. DOI: https://doi.org/10.1007/s002540050006
Yan N., Liu W., Xie H., Gao L., Han Y., Wang M., Li H., 2016. Distribution and assessment of heavy metals in the surface sediment of Yellow River, China. Journal of Environmental Sciences 39: 45-51. DOI: https://doi.org/10.1016/j.jes.2015.10.017
Yanguo T., Shijun N., Pengcheng J., Jian D., Chengjiang Z., Jinsheng W., 2004. Eco-environmental geochemistry of heavy metal pollution in Dexing mining area. Chinese Journal of Geochemistry 23: 349-358. DOI: https://doi.org/10.1007/BF02871307
Zhaoyong Z., Abuduwaili J., Fengqing J., 2015. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China. Environmental Monitoring and Assessment 187: 33. DOI: https://doi.org/10.1007/s10661-014-4191-x
Zhou Z., Wang Y., Teng H., Yang H., Liu A., Li M., Niu X., 2020. Historical evolution of sources and pollution levels of heavy metals in the sediment of the Shuanglong Reservoir, China. Water 12: 1855. DOI: https://doi.org/10.3390/w12071855
Żurek R., Diakiv V., Szarek-Gwiazda E., Kosiba J., Wojtal A.Z., 2018. Unique pit lake created in an opencast potassium salt mine (Dombrovska pit lake in Kalush, Ukraine). Mine Water at the Environment 37(3): 456-469. DOI: https://doi.org/10.1007/s10230-018-0527-z
Żylinska A., Szczepanik Z., Salwa S., 2006. Cambrian of the Holy Cross Mountains, Poland; biostratigraphy of the Wiśniowka Hill succession. Acta Geologica Polonica 56: 443-461.
License
Copyright (c) 2023 ROMAN SULIGOWSKI, TADEUSZ MOLENDA, TADEUSZ CIUPA
This work is licensed under a Creative Commons Attribution 4.0 International License.