Aeolian abrasion of the coastal deposits on the western Crete
PDF

Keywords

coastal deposits
aeolian processes
quartz abrasion
morphoscopic method
Crete

How to Cite

Dulias, R. (2023). Aeolian abrasion of the coastal deposits on the western Crete. Quaestiones Geographicae, 42(3), 161–174. https://doi.org/10.14746/quageo-2023-0029

Abstract

Crete is located in the collision zone of tectonic plates; therefore, the island coast was often shaped due to tectonic phenomena. In 365 AD, a major earthquake caused the uplift of the coast of western Crete by a few metres. It means that the modern beaches of this part of the island are fragments of the former seabed with its littoral deposits. Some of these deposits are affected by wind activity. The article aims to answer the question, did wind transport lasting more than 1600 years give the marine deposits the features of aeolian deposits? Grain size and mineral composition were determined for samples from seven research sites in western Crete. Deposits representing three sedimentary environments were examined – high-energy beach, aeolian, and beach with permanent or periodic fluvial supply. Quartz abrasion was established using the morphoscopic method. In the 0.8–1.0 mm fraction, less resistant carbonate minerals dominate (on average, 77%), while the content of more resistant quartz is low (on average, 18%). It means most deposits are relatively young and were briefly in the range of aeolian processes. Coastal deposits are dominated by moderately rounded and mat grains EM/RM, on average 79%. The content of very well-rounded and mat grains RM is low, on average 18%. Multiple predominances of EM/RM grains in relation to RM grains indicate short-term aeolian transport. It can be concluded that the degree of aeolisation of coastal deposits by wind activity from 365 AD to the present is weak, at most moderate.

https://doi.org/10.14746/quageo-2023-0029
PDF

References

Araújo M.A., 1994. Protection and conservation of Sampaio area (Labruge, Vila do Conde, north of Portugal). Littoral 94: 26-29.

Bellanova P., Bahlburg H., Nentwig V., Spiske M., 2016. Microtextural analysis of quartz grains of tsunami and non-tsunami deposits – A case study from Tirúa (Chile). Sedimentary Geology 343: 72-84. DOI: https://doi.org/10.1016/j.sedgeo.2016.08.001

Bertran P., Fouéré P., 2020. The Holocene and coatal dune deposits of Soulac-sur-Mer (Médoc peninsula, southwest France). Quaternaire 31(3): 231-248. DOI: https://doi.org/10.4000/quaternaire.14277

Bird E.C.F., 2000. Coastal environment: An introduction. John Wiley & Sons, Chichester.

Cailleux A., 1942. Les actions éoliennes périglaciaires en Europe. Mémoires de la Société Géologique de France 21(1-2), Mémoire 46.

Caputo R., Catalano S., Monaco C., Romagnoli G., Tortorici G., Tortorici L., 2010. Active faulting on the island of Crete (Greece). Geophysical Journal International 183(1): 111-126. DOI: https://doi.org/10.1111/j.1365-246X.2010.04749.x

Carter R.I.G., 1988. Coastal environments. Academic Press, London.

Carvalhido R.P., Pereira D.I., Cunha P.P., Buvlaert J.-P., Murray A.S., 2014. Characterization and dating of coastal deposits of NW Portugal (Minho-Neiva area): A record of climate, eustasy and crustal uplift during the Quaternary. Quaternary International 328-329: 94-106. DOI: https://doi.org/10.1016/j.quaint.2014.01.025

Cheimonas Th., Manoutsoglou E., Stavroulaki M., Skoutelis N., 2016. Classification of building stones of the Frangokastello castle, Sfakia, Crete. Bulletin of the Geological Society of Greece 50: 209-217. DOI: https://doi.org/10.12681/bgsg.11721

Cherian A., Chandrasekar N., Rajamanickam V., 2004. Light minerals of beach sediments from Southern Tamilnadu, south east coast of India. Oceanologia 46(2): 233-252.

Costa P.J.M., Andrade C., Dawson A.G., Mahaney W.C., Freitas M.C., Paris R., Taborda R., 2012. Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sedimentary Geology 275-276: 55-69. DOI: https://doi.org/10.1016/j.sedgeo.2012.07.013

Dulias R., 2023. Aeolian processes on the outwash plain in the Oświęcim Basin, southern Poland. Environmental and Socio-Economic Studies 11(1): 72-81. DOI: https://doi.org/10.2478/environ-2023-0006

Dullek Ł.E., Olszak I.J., 2013. Litologia osadów eolicznych pomiędzy Orzechowem a Ustką. Geologia i geomorfologia 10: 51-65.

Edwards A.C., 2001. Grain size and sorting in modern beach sands. Journal of Coastal Research 17(1): 38-52.

Epting M., 1969. Geologie der östlichen Talea Ori, Kreta. Diplomarbeit, Universitat Freiburg.

Flemming N.C., 1978. Holocene eustatic changes and coastal tectonics in the northeast Mediterranean: Implications for models of crustal consumption. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 289: 405-458. DOI: https://doi.org/10.1098/rsta.1978.0065

Folk R.L., Ward W.C., 1957. Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1): 3-26. DOI: https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Garzanti E., Resentini A., Andò S., Vezzoli G., Pereira A., Vermeesch P., 2015. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology 62(4): 971-976. DOI: https://doi.org/10.1111/sed.12169

Goździk J., 1980. Zastosowanie morfometrii i graniformametrii do badań osadów w kopalni węgla brunatnego Bełchatów. Studia regionalne 4(9): 101-114.

Goździk J., Mycielska-Dowgiałlo E., 1982. Badania wpływu niektórych procesów geologicznych na przekształcenia powierzchni ziarn kwarcowych. Przegląd Geograficzny 54(3): 219-241.

Guest-Papamanoli A., 1989. Les carrières de grès dunaire à Malia. Bulletin de Correspondance Hellénique 113(1): 113-122. DOI: https://doi.org/10.3406/bch.1989.4712

Itamiya H., Sugita R., Sugai T., 2019. Analysis of the surface microtextures and morphologies of beach quartz grains in Japan and implications for provenance research. Progress in Earth and Planetary Science 6, Article 43. DOI: https://doi.org/10.1186/s40645-019-0287-9

Kalińska-Nartiša E., Stivrins N., Grudzinska I., 2018. Quartz grains reveal sedimentary palaeoenvironment and past storm events: A case study from eastern Baltic. Estuarine Coastal and Shelf Science 200: 359-370. DOI: https://doi.org/10.1016/j.ecss.2017.11.027

Kasper-Zubillaga J.J., 2009. Roundness in quartz grains from inland and coastal dune sands, Altar Desert, Sonora, Mexico. Boletín de la Sociedad Geológica Mexicana 61(1): 1-12. DOI: https://doi.org/10.18268/BSGM2009v61n1a1

Kasper-Zubillaga J.J., Dickinson W.W., Carranza-Edwards A., Hornelas-Orozco Y., 2005. Petrography of quartz grains in beach and dune sands of Northland, North Island, New Zealand. New Zealand Journal of Geology and Geophysics 48: 649-660. DOI: https://doi.org/10.1080/00288306.2005.9515139

Kelletat D., 1991. The 1550 BP tectonic event in the Eastern Mediterranean as a basis for assessing the intensity of shore processes. Zeitschrift für Geomorphologie N.F., Suppl.-Bd 81: 181-194.

Keraudren B., Dalongeville R., Bernier P., Caron V., Renault-Miskovsky J., 2000. Le Pléistocène supérieur marin (Tyrrhénien) en Crète nord-orientale (Grèce). Géomorphologie: Relief Processus Environnement 3: 177-190. DOI: https://doi.org/10.3406/morfo.2000.1061

Krinsley D.H., Doornkamp J.C., 1973. Atlas of quartz sand surface textures. Cambridge University Press., Cambridge.

Krumbein W.C., 1941. Measurement and geological significance of shape and rounded of sedimentary particles. Journal of Sedimentary Research 11(2): 64-72. DOI: https://doi.org/10.1306/D42690F3-2B26-11D7-8648000102C1865D

Kurowski L., 2002. Wpływ dynamiki falowania na zmiany w strefie plaży zewnętrznej na przykładzie wybrzeża Bałtyku między Mrzeżynem i Dźwirzynem. Przegląd Geologiczny 50(11): 1115-1120.

Łabuz T.A., Grunewald R., Bobykina V., Chubarenko B., Česnulevičius A., Bautrėnas A., Morkūnaitė R., Tõnisson H., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaestiones Geographicae 37(1): 47-71. DOI: https://doi.org/10.2478/quageo-2018-0005

Lindé K., Mycielska-Dowgiałło E., 1980. Some experimentally produced microtextures on grain surfaces of quartz sand. Geografiska Annaler, Series A: Physical Geography 62A (3-4): 171-184. DOI: https://doi.org/10.1080/04353676.1980.11880008

Mountrakis D., Kilias A., Pavlaki A., Fassoulas C., Thomaidou E., Papazachos C., Papaioannou C., Roumelioti Z., Benetatos C., Vamvakaris D., 2012. Neotectonic study of Western Crete and implications for seismic hazard assessment. Journal of the Virtual Explorer 42(2), Paper 2. DOI: https://doi.org/10.3809/jvirtex.2011.00285

Mourtzas N., Kolaiti E., 2020. Palaeogeographic reconstruction of the Messara Gulf and Matala Bay (Crete, Greece): Coastal response to sea level changes during prehistoric and historic times. Alpine and Mediterranean Quaternary 33(1): 61-87.

Mourtzas N., Kolaiti E., Anzidei M., 2015. Vertical land movements and sea level changes along the coast of Crete (Greece) since Late Holocene. Quaternary International 401: 43-70. DOI: https://doi.org/10.1016/j.quaint.2015.08.008

Mycielska-Dowgiałło E., 1988. Cechy urzeźbienia ziarn kwarcu z plaż różnych regionów klimatycznych świata. In: Mycielska-Dowgiałło E. (ed.), Geneza osadów i gleb w świetle badań w mikroskopie elektronowym. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa: 27-33.

Mycielska-Dowgiałło E., Woronko B., 1998. Analiza obtoczenia i zmatowienia powierzchni ziarn kwarcowych frakcji piaszczystej i jej wartość interpretacyjna. Przegląd Geologiczny 46: 1275-1281.

Nordstrom K.F., 2000. Beaches and dunes of developed coasts. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511549519

Ott R.F., Scherler D., Wegmann K.W., D’Arcy M.K., Pope R.J., Ivy-Ochs S., Christl M., Vockenhuber Ch., Rittenour T.M., 2022. Weak coupling of fluvial aggradation and paleo-denudation rates during the last glacial cycle, Crete, Greece. Earth Surface Processes and Landforms. DOI: https://doi.org/10.31223/X5JM0K

Owczinnikow G.I., Snytko W.A., Szczypek T., Wyrkin W.B., 2002. Cechy granulometryczne współczesnych piasków eolicznych południowej części Kotliny Barguzińskiej (Zabajkale). In: Nowaczyk B., Szczypek T. (eds), Utwory i formy eoliczne. Instytut Badań Czwartorzędu i Geoekologii Uniwersytetu Adama Mickiewicza. Stowarzyszenie Geomorfologów Polskich, Poznań: 48-53.

Papadopoulos G.A., 2011. A seismic history of Crete: Earthquakes and Tsunamis: 2000 BC-2011 AD – The Hellenic Arc and Trench. Ocelots Publications, Athens.

Pararas-Carayannis G., Mader Ch.L., 2010. The earthquake and tsunami of 365 AD in the eastern Mediterranean Sea. In: Proceedings of the 9th U.S. National and 10th Canadian Conference on Earthquake Engineering. Toronto, Ontario, Canada, Paper No 1846.

Pearson Ch.L., Brewer P.W., Brown D., Heaton T.J., Hodgins G.W.L., Jull A.J.T., Lange T., Salzer M.W., 2018. Annual radiocarbon record indicates 16th century BCE date for the Thera eruption. Science Advances 4(8). DOI: https://doi.org/10.1126/sciadv.aar8241

Pirazzoli P., 1986. The early byzantine tectonic Paroxysm. Zeitschrift für Geomorphologie N.F., Suppl.-Bd 62: 31e49.

Pirazzoli P.A., Laborel J., Stiros S.C., 1996a. Coastal indicators of rapid uplift and subsidence: Examples from Crete and other eastern Mediterranean sites. Zeitschrift für Geomorphologie N.F., Suppl.-Bd 102: 21e35.

Pirazzoli P.A., Laborel J., Stiros S.C., 1996b. Earthquake clustering in the Eastern Mediterranean during historical times. Journal of Geophysical Research 101, B3: 6083-6097. DOI: https://doi.org/10.1029/95JB00914

Powers M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology 23(2): 117-119. DOI: https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D

Price S., Higham T., Nixon L., Moody J., 2002. Relative sea-level changes in Crete: Reassessment of radiocarbon dates from Sphakia and West Crete. The Annual of the British School at Athens 97: 171-200. DOI: https://doi.org/10.1017/S0068245400017378

Pyökäri M., 1999. Beach sediments of Crete: Texture, composition, roundness, source and transport. Journal of Coastal Research 15(2): 537-553.

Scheffers A., Scheffers S., 2007. Tsunami deposits on the coastline of west Crete (Greece). Earth and Plnetary Science Letters 259: 613-624. DOI: https://doi.org/10.1016/j.epsl.2007.05.041

Setlow L.W., 1978. Age determination of reddened coastal dunes in northwest Florida, US, by use of scanning microscopy. In: Whalley W.B. (ed.), Scanning electron microscopy in the study of sediments. Norwich, England. Geoabstracts: 283-306.

Skourtsos E., Pope R., Triantaphyllou M.V., 2007. Tectono-sedimentary evolution and rates of tectonic uplift of the Sfakia coastal zone, southwestern Crete. Bulletin of the Geological Society of Greece 37(1): 475-487. DOI: https://doi.org/10.12681/bgsg.16649

Stiros S., 2001. The AD 365 Crete earthquake and possible seismic clustering during the 4-6th centuries AD in the Eastern Mediterranean: A review of historical and archaeological data. Journal of Structural Geology 23(2-3): 545-562. DOI: https://doi.org/10.1016/S0191-8141(00)00118-8

Stiros S., 2010. The 8.5+ magnitude, AD365 earthquake in Crete: Coastal uplift, topography changes, archaeological and historical signature. Quaternary International 216(1-2): 54-63. DOI: https://doi.org/10.1016/j.quaint.2009.05.005

Strasser T.F., Runnels C., Wegmann K., Panagopoulou E., Mccoy F., Digregorio Ch., Karkanas P., Thompson N., 2011. Dating Palaeolithic sites in southwestern Crete, Greece. Journal of Quaternary Science 26(5): 553-560. DOI: https://doi.org/10.1002/jqs.1482

Thommeret Y., Thommeret J., Laborel J., Montaggioni L.F., Pirazzoli P.A., 1981. Late Holocene shoreline changes and seismo-tectonic displacements in western Crete (Greece). Zeitschrift für Geomorphologie, 40: 127-149.

Tylkowski J., Samołyk M., 2011. Zmienność przestrzenna powierzchniowych osadów plażowych brzegu morskiego wyspy Wolin. Badania fizjograficzne nad Polską Zachodnią. Seria A – Geografia Fizyczna 62: 151-163.

Tziligkaki E., 2018. Quarrying the coasts of Crete in antiquity; some geoarchaeological considerations. Bulletin of the Geological Society of Greece 53(1): 229-265. DOI: https://doi.org/10.12681/bgsg.18999

van Hinsbergen D., Meulenkamp J., 2006. Neogene supradetachment basin development on Crete (Greece) during exhumation of the South Aegean core complex. Basin Research 18(1): 103-124. DOI: https://doi.org/10.1111/j.1365-2117.2005.00282.x

Werner V., Baika K., Fischer P., Hadler H., Obrocki L., Willershäuser T., Tzigounaki A., Tsigkou A., Reicherter K., Papanikolaou I., Emde K., Vött A., 2018. The sedimentary and geomorphological imprint of the AD 365 tsunami on the coasts of southwestern Crete (Greece) – Examples from Sougia and Palaiochora. Quaternary International 473: 66-90. DOI: https://doi.org/10.1016/j.quaint.2017.07.016

Whitmore J.H., Strom R., 2017. Rounding of quartz and K-feldspar sand from Beach to Dune settings along the California and Oregon Coastlines: Implications for ancient sandstones. Answers Research Journal 10: 259-270.

Woronko B., 2012. Zapis procesów eolicznych w osadach piaszczystych plejstocenu na wybranych obszarach Polski środkowej i północno-wschodniej. Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski, Warszawa.

Wyrkin W.B., 1998. Sowriemiennoje ekzogiennoje reljefoobrazowanije kotłowin bajkalskogo tipa. Institute of Geography, Siberian Branch, Russian Academy of Sciences, Irkutsk [in Russian].

Zieliński P., 2016. Regionalne i lokalne uwarunkowania późnovistuliańskiej depozycji eolicznej w środkowej części europejskiego pasa piaszczystego. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin.

Žilinskas G., Jarmalavičius D., Pupienis D., 2018. The influence of natural and anthropogenic factors on grain size distribution along the southeastern Baltic spits. Geological Quarterly 62(2): 375-384. DOI: https://doi.org/10.7306/gq.1413