Variability of air quality and bioclimatic conditions in urban area: Case study of Lublin
PDF

Keywords

air pollution
Common Air Quality Index
Universal Thermal Climate Index
urban bioclimate

How to Cite

Dobek, M., Wereski, S., & Krzyżewska, A. (2023). Variability of air quality and bioclimatic conditions in urban area: Case study of Lublin. Quaestiones Geographicae, 42(3), 175–193. https://doi.org/10.14746/quageo-2023-0030

Abstract

The paper analyses biometeorological conditions in Lublin based on the Universal Thermal Climate Index (UTCI), and air quality based on the Common Air Quality Index (CAQI). The used data were obtained from the database of IMGW-PIB and RDEM, and cover the period 2015–2021. The most frequently occurring biometeorological conditions were classified as no thermal stress. They were observed with a frequency of 34.3%. Conditions unfavourable for the human organism accounted for 65.7% in total, including those belonging to thermal stress classes related to cold stress (52.3%), and heat stress (13.4%). In the analysed years, 75.5% of cases were with very low and low air pollution. High and very high air pollution usually occurred during biometeorological conditions related to cold stress (from slight cold stress to strong cold stress). During extreme thermal phenomena, such as a cold wave (January 2007) and hot wave (August 2015), unfavourable biometeorological conditions were accompanied by low aerosanitary conditions (low air quality). In the analysed period, and particularly in recent years, an improvement in air quality has been observed, potentially associated with limited mobility of people during the COVID-19 pandemic.

https://doi.org/10.14746/quageo-2023-0030
PDF

References

Airly, 2022. Map of air quality by Airly. Online: https://airly.org/map/en/ (accessed 10.10.2022).

Badach J., Dymnicka M., Baranowski A., 2020. Urban vegetation in air quality management: A review and policy framework. Sustainability 12. DOI: https://doi.org/10.3390/su12031258

Baghideh M., Sabzevari H., Shekari Badi A., Shojaee T., 2016. Evaluation of human thermal comfort using UTCI index: Case study Khorasan Razavi, Iran. Natural Environment Change 2: 165-175.

Bao R., Zhang A., 2020. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Science of the Total Environment 731: 139052. DOI: https://doi.org/10.1016/j.scitotenv.2020.139052

Bartoszek K., Wereski S., Krzyżewska A., Dobek M., 2017. The influence of atmospheric circulation on bioclimatic conditions in Lublin (Poland). Bulletin of Geography. Physical Geography Series 12: 41-49. DOI: https://doi.org/10.1515/bgeo-2017-0004

Berman J.D., Ebisu K., 2020. Changes in U.S. air pollution during the COVID-19 pandemic. Science of the Total Environment 739: 139864. DOI: https://doi.org/10.1016/j.scitotenv.2020.139864

Bilik A., Nowosad M., 1998. Air dustiness measurements by means of a conimeter in Lublin in the period 1991-1996. Problems of contemporary climatology and agrometeorology of the Lublin region: 21-23.

Błażejczyk K., 2002. Importance of circulation and local conditions in shaping the climate and bioclimate of the Warsaw agglomeration. Geographical Documentation 26: 160.

Błażejczyk K., 2004. Bioclimatic conditions of tourism and recreation in Poland. Geographical Works 192: 291.

Błażejczyk K., Epstein Y., Jendritzky G., Staiger H., Tinz B., 2012. Comparison of UTCI to selected thermal indices. International Journal of Biometeorology 56: 515-535. DOI: https://doi.org/10.1007/s00484-011-0453-2

Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B., 2013. An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica 86(1): 5-10. DOI: https://doi.org/10.7163/GPol.2013.1

Błażejczyk K., Kuchcik M., Błażejczyk A., Milewski P., Szmyd J., 2014. Assessment of Urban thermal stress by UTCI – Experimental and modelling studies: An example from Poland. Die Erde 145(1-2): 16-33.

Błażejczyk K., Kunert A., 2011. Bioclimatic conditionings of recreation and tourism in Poland. Monographs IGSO PAS 13: 366.

Błażejczyk K., Twardosz R., Wałach P., Czarnecka K., Błażejczyk A., 2022. Heat strain and mortality effects of prolonged central European heat wave – An example of June 2019 in Poland. International Journal of Biometeorology 66: 149-161. DOI: https://doi.org/10.1007/s00484-021-02202-0

Bokwa A., 2010. Multiannual changes in the structure of city mezoclimate based on the case study of Kraków. IGSO JU, Kraków: 258.

Bröde P., Krüger E.L., Rossi F.A., Fiala D., 2012. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI – A case study in Southern Brasil. International Journal of Biometeorology 56: 471-480. DOI: https://doi.org/10.1007/s00484-011-0452-3

Burkart K., Meier F., Schneider A., Breitner S., Canário P., Alcoforado M.J., Scherer D., Endlicher W., 2016. Modification of heatrelated mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives 124: 927-934. DOI: https://doi.org/10.1289/ehp.1409529

Chmielowiec-Korzeniowska A., Popiołek-Pyrz M., 2008. Atmospheric air dustiness in the area of an urban agglomeration and its vicinity. Problems of Ecology 12(2): 69-72.

Dash S.K., Dey S., Salunke P., Dalal M., Saraswat V., Chowdhury S., Choudhary R.K., 2017. Comparative study of heat indices in India based on observed and model simulated data. Current World Environment 12: 504-520. DOI: https://doi.org/10.12944/CWE.12.3.06

Di Napoli C., Pappenberger F., Cloke H.L., 2018. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology 62: 1155-1165. DOI: https://doi.org/10.1007/s00484-018-1518-2

Dobek M., Demczuk P., Nowosad M., 2013. Spatial variation of the Universal Thermal Climate Index in Lublin in specified weather scenarios. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 68: 21-38. DOI: https://doi.org/10.2478/v10066-012-0026-3

Dobek M., Krzyżewska A., 2015. Selected issues concerning the bioclimate of Lublin. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 70(2): 117-129. (in Polish). DOI: https://doi.org/10.17951/b.2015.70.2.117

Dobek M., Siłuch M., Wereski S., Bartoszek K., Skiba K., 2008. Duration and frequency of occurrence of onerous bioclimatic conditions in Lublin based on the Humidex index. In: Kłysik K., Wibig J., Fortuniak K. (eds), Climate and bioclimate of cities, Publishing House of the University of Łódź, Department of Meteorology and Climatology, Łódź: 415-422.

Dobek M., Wereski S., Krzyżewska A., 2020. Bioclimatic conditions of Lublin based on the Universal Thermal Climate Index (UTCI). Miscellanea Geographica 24(3): 1-10. DOI: https://doi.org/10.2478/mgrsd-2020-0025

Duda A., Pomorska K., 2007. Characteristics of dust immission in the Lublin agglomeration. Environmental Protection Yearbook 9: 259-266. (in Polish).

EEA [European Environment Agency], 2020. Air quality in Europe – 2020 report. EEA report No 09/2020. Publications Office of the European Union, Luxembourg. European Environment Agency, Denmark: 160.

EPA [U.S. Environmental Protection Agency], 2019. Integrated science assessment (ISA) for particulate matter (Final report, 2019). EPA/600/R19/188. U.S. Environmental Protection Agency, Washington DC, USA.

Fahad M.G.D., Karimi M., Nazari R., Sabrin S., 2021. Developing a geospatial framework for coupled large scale thermal comfort and air quality indices using high resolution gridded meteorological and station based observations. Sustainable Cities and Society 74. DOI: https://doi.org/10.1016/j.scs.2021.103204

Fiala D., Havenith G., Bröde P., Kampmann B., Jendritzky G., 2012. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. International Journal of Biometeorology 56(3): 429-441. DOI: https://doi.org/10.1007/s00484-011-0424-7

Fiala D., Lomas K.J., Stohrer M., 2001. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology 45: 143-159. DOI: https://doi.org/10.1007/s004840100099

Filonchyk M., Hurynovich V., Yan H., 2021. Impact of covid-19 pandemic on air pollution in Poland based on surface measurements and satellite data. Aerosol Air Quality Research 21(1-13). DOI: https://doi.org/10.4209/aaqr.200472

Fortuniak K., 2003. Urban heat Island. Energetic basics. Experimental studies. Digital and statistical models, Łódź: 233.

Ge Q., Kong Q., Xi J., Zheng J., 2016. Application of UTCI in China from tourism perspecyive. Theoretical Applied Climatology 128: 551-561. DOI: https://doi.org/10.1007/s00704-016-1731-z

GIOŚ [Główny Inspektor Ochrony Środowiska], 2022. Przygotowane dane do pobrania. Online: https://powietrze.gios.gov.pl/pjp/archives# (accessed 22.07.2022).

Głogowski A., Perona P., Bryś T., Bryś K., 2022. Changes of bioclimatic conditions in the Kłodzko region (SW Poland). Sustainability 14: 6770. DOI: https://doi.org/10.3390/su14116770

Grass D., 2008. Assessing the impacts of air pollution and extreme weather on human health in the urban environment. Columbia University: 150.

Grzybowski P.T., Markowicz K.M., Musiał J.P., 2021. Reduction of air pollution in Poland in spring 2020 during the lockdown caused by the covid-19 pandemic. Remote Sensing 13: 1-23. DOI: https://doi.org/10.3390/rs13183784

Hajek P., Olej V., 2015. Predicting Common Air Quality Index – The case of Czech Microregions. Aerosol and Air Quality Research 15: 544-555. DOI: https://doi.org/10.4209/aaqr.2014.08.0154

Havenith G., Fiala D., Błazejczyk K., Richards M., Bröde P., Holmér I., Rintamaki H., Benshabat Y., Jendritzky G., 2012. The UTCI-clothing model. International Journal of Biometeorology 56(3): 461-470. DOI: https://doi.org/10.1007/s00484-011-0451-4

Hill L. E., Vernon H. M., Hargood-Ash D., 1922. The kata-thermometer as measure of ventilation. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological CharacterVolume 93(651): 198-206. DOI: https://doi.org/10.1098/rspb.1922.0014

IPCC [Intergovernmental Panel on Climate Change], 2022. Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge: 3056.

Kampmann B., Bröde P., Fiala D., 2012. Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. International Journal of Biometeorology 56(3): 505-513. DOI: https://doi.org/10.1007/s00484-011-0410-0

Karavas Z., Karayannis V., Moustakas K., 2020. Comparative study of air quality indices in the European Union towards adopting a Common Air Quality Index. Energy and Environment 32(6): 959-980. DOI: https://doi.org/10.1177/0958305X20921846

Kaszewski B.M., 2020. Air pollution research in Lublin. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 75: 69-86.

Kaszewski B.M., Siwek K., Gluza A., 2006. Circulation conditions of occurrence of extreme values of catathermometric cooling in Lublin. In: Krzysztofiak L. (ed.), Functioning and monitoring of Polish geoecosystems in the conditions of growing human pressure. Environment Monitoring Library, Warsaw: 183-192.

Khomsi K., Chelhaoui Y., Alilou S., Souri R., Najmi H., Souhaili Z., 2022. Concurrent heat waves and extreme ozone (O3) episodes: Combined atmospheric patterns and impact on human health. International Journal of Environmental Research and Public Health 19: 2770. DOI: https://doi.org/10.3390/ijerph19052770

Kociołek-Balawejder E., Stanisławska E., 2012. Environmental chemistry. Publishing House of the University of Economics, Wrocław.

Kovats R.S., Hajat S., Wilkinson P., 2004. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Journal of Occupational and Environmental Medicine 61: 893-898. DOI: https://doi.org/10.1136/oem.2003.012047

Kozak D., Niećko J., Siwek K., Nazimek D., 1994. Nitrogen dioxide concentration in atmospheric air in Lublin. Air Protection and Waste Problems 28(6): 149-151.

Kozak D., Niećko J., Siwek K., Nazimek D., 1995. Nitrogen dioxide immission in Lublin. Ecoengineering 3(4): 24-28.

Kozłowska-Szczęsna T., Błażejczyk K., Krawczyk B., 1997. Human bioclimatology. Methods and their application in research on the bioclimate of Poland. Monographs IGSO PAS 1: 200.

Kozłowska-Szczęsna T., Krawczyk B., Kuchcik T., 2004. Effect of the atmospheric environment on human health and wellbeing. Monographs IGSO PAS 4: 194.

Kruczko Z., 1962. Sultry days in Lublin. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 17(12): 297-306.

Krzyżanowski M., Cohen A., Anderson R., 2002. Quantification of health effects of exposure to air pollution. Occupational and Environmental Medicine 59: 791-793. DOI: https://doi.org/10.1136/oem.59.12.791

Krzyżewska A., 2019. Comparison of meteorological conditions during the two strongest heat waves in Poland 1994 and 2015. In: Chojnacka-Ożga L., Lorenc H. (eds), Modern problems of Polish climate. IMGW-PIB, Warsaw: 97-106.

Krzyżewska A., Dyer J., 2018. The August 2015 mega-heatwave in Poland in the context of past events. Weather 2(7): 207-204. DOI: https://doi.org/10.1002/wea.3244

Krzyżewska A., Wereski S., Dobek M., 2021. Summer UTCI variability in Poland in twenty-first century. International Journal of Biometeorology 65: 1497-1513. DOI: https://doi.org/10.1007/s00484-020-01965-2

Krzyżewska A., Wereski S., Nowosad M., 2019. Thermal variability in the Lublin Region during the frost wave in January 2017. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 74(1): 217-229. DOI: https://doi.org/10.17951/b.2019.74.0.217-229

Kuchcik M., 2021. Mortality and thermal environment (UTCI) in Poland – Long-term, multi-city study. International Journal of Biometeorology 65: 1529-1541. DOI: https://doi.org/10.1007/s00484-020-01995-w

Kuchcik M., Błażejczyk K., Halaś A., 2021a. The stimuli of thermal environment defined According to UTCI in Poland. Geographia Polonica 94(2): 183-200. DOI: https://doi.org/10.7163/GPol.0200

Kuchcik M., Błażejczyk K., Halaś A., 2021b. Changes in bioclimatic indices. In: Falarz M. (ed.), Climate change in Poland. Springer Climate, Springer. DOI: https://doi.org/10.1007/978-3-030-70328-8_19

Kumar K.P., 2022. A critical evaluation of air quality index models (1960-2021). Environmental Monitoring and Assessment 194: 324. DOI: https://doi.org/10.1007/s10661-022-09896-8

Kyriakidis I., Karatzas K., Kukkonen J., Papadourakis G., Ware A., 2013. Evaluation and analysis of artificial neural networks and decision trees in forecasting of Common Air Quality Index in Thessaloniki, Greece. Environmental Science, Computer Science 2: 111-124.

Kyriakidis I., Karatzas K., Papadourakis G., Ware A., Kukkonen J., 2012. Investigation and forecasting of the Common Air Quality Index in Thessaloniki, Greece. In: Artificial intelligence applications and innovations, IFIP advances in information and communication technology 382: 390-400. DOI: https://doi.org/10.1007/978-3-642-33412-2_40

Landsberg H.E., 1981. The urban climate. Academic Press, New York: 285.

Lin H., Ma H., Zhang M., 2022. Analysis of the variation characteristics of human thermal comfort in summer of China from 1980 to 2019 based on UTCI. Climate Change Research 18(1): 58-69.

Lindner-Cendrowska K., 2011. Assessment of sensible climate in Warsaw using UTCI. Papers and Geographical Studies 47: 285-291.

Lindner-Cendrowska K., 2013. Assessment of bioclimatic conditions in cities for tourism and recreational purposes (a Warsaw case study). Geographia Polonica 86(1): 55-66. DOI: https://doi.org/10.7163/GPol.2013.7

Lisicka R., Gleń G., Milanowska-Pitura M., 2020. Annual assessment of air quality in the Lublin Voivodeship, Lublin.

Lokys H.L., Junk J., Krein A., 2018. Short-term effects of air quality and thermal stress on non-accidental morbidity – A multivariate meta-analysis comparing indices to single measures. International Journal of Biometeorology 62: 17-27. DOI: https://doi.org/10.1007/s00484-017-1326-0

Luterbacher J., Dietrich D., Xoplaki E., Grosjean M., Wanner H., 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303: 1499-1503. DOI: https://doi.org/10.1126/science.1093877

Mandal T.K., Gorai A.K., 2014. Air quality indices: A literature review. Journal of Environmental Science and Engineering 56(3): 357-362.

Mannshardt E., Naess L., 2018. Air quality in the USA. Significance 15(5): 24-27. DOI: https://doi.org/10.1111/j.1740-9713.2018.01190.x

Meehl G.A., Tebaldi C., 2004. More intense, more frequent and longer lasting heat waves in the 21st Century. Science 305: 994-997. DOI: https://doi.org/10.1126/science.1098704

Muhammad S., Long X., Salman M., 2020. COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of the Total Environment 728: 138820. DOI: https://doi.org/10.1016/j.scitotenv.2020.138820

Nastos P., Matzarakis A., 2012. The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theoretical and Applied Climatology 108: 591-599. DOI: https://doi.org/10.1007/s00704-011-0555-0

Nemeth A., 2011. Changing thermal bioclimate in some Hungarian cities. Acta Climatologica et Chorologica. Universitatis Szegediensis 44-45: 93-101.

Nidzgorska-Lencewicz J., 2015. Variability of human-biometeorological conditions in Gdańsk. Polish Journal of Environmental Studies 24(1): 215-226. DOI: https://doi.org/10.15244/pjoes/26116

Nidzgorska-Lencewicz J., Czarnecka M., 2015. Winter weather conditions vs. air quality in Tricity, Poland. Theoretical and Apply Climatology 119: 611-627. DOI: https://doi.org/10.1007/s00704-014-1129-8

Niedźwiedź T., Łupikasza E.B., Małarzewski Ł., 2021. Surface-based nocturnal air temperature inversions in southern Poland and their influence on PM10 and PM2.5 concentrations in Upper Silesia. Theoretical and Apply Climatology 146: 897-919. DOI: https://doi.org/10.1007/s00704-021-03752-4

Nowosad M., 2000. Results of air dustiness measurements by means of a conimeter in Lublin. Annales Universitatis Mariae Curie-Sklodowska section B (Geographia, Geologia) 53: 161-169.

Ohashi Y., Katsuta T., Tani H., Okabayashi T., Miyahara S., Miyashita R., 2018. Human cold stress of strong local-wind “Hijikawaarashi” in Japan, based on the UTCI index and thermophysiological response. International Journal of Bioclimatology 62: 1241-1250. DOI: https://doi.org/10.1007/s00484-018-1529-z

Pecelj M., Matzarakis A., Vujadinovic M., Radovanovic M., Vagic N., Ðuric D., Cvetkovic M., 2021. Temporal analysis of urban-suburban PET, mPET and UTCI indices in Belgrade (Serbia). Atmosphere 12: 916. DOI: https://doi.org/10.3390/atmos12070916

Pellegrini E., Lorenzini G., Nali C., 2007. The 2003 European heat wave: Which role for ozone? Some data from Tuscany Central Italy. Water, Air and Soil Pollution 181: 401-408. DOI: https://doi.org/10.1007/s11270-006-9310-z

Plaia A., Ruggieri M., 2011. Air quality indices: A review. Reviews in Environmental Science and Bio/Technology 10: 165-179. DOI: https://doi.org/10.1007/s11157-010-9227-2

Poupkou A., Nastos P., Melas D., 2011. Climatology of discomfort index and air quality index in a large urban Mediterranean agglomeration. Water, Air and Soil Pollution 222: 163-183. DOI: https://doi.org/10.1007/s11270-011-0814-9

Pyrgou A., Hadjinicolaou P., Santamouris M., 2018. Enhanced near-surface ozone under heatwave conditions in a Mediterranean Island. Scientific Reports 8: 9191. DOI: https://doi.org/10.1038/s41598-018-27590-z

Regulation of the Minister of the Environment as of 24 August 2012 regarding the levels of certain substances in the air. Journal of Laws 2012.1031: 1-9.

Roffe S.J., van der Walt A.J., Fitchett J.M., 2023. Spatiotemporal characteristics of human thermal comfort across southern Africa: An analysis of the Universal Thermal Climate Index for 1971-2021. International Journal of Climatology 1(23). DOI: https://doi.org/10.1002/joc.8009

Rogulska A. (ed.), 2021. State of the environment in the Lublin Voivodeship. Report 2020. Inspectorate of Environmental Protection, Department of Environmental Monitoring. Regional Department of Environmental Monitoring in Lublin, Lublin.

Rogulski M., Badyda A., 2021. Air pollution observations in selected locations in Poland during the lockdown related to COVID-19. Atmosphere 12: 806. DOI: https://doi.org/10.3390/atmos12070806

Roshan G., Yousefi R., Błażejczyk K., 2018. Assessment of the climatic potential for tourism in Iran through biometeorology clustering. International Journal of Biometeorology 62: 525-542. DOI: https://doi.org/10.1007/s00484-017-1462-6

Rozbicka K., Michalak M., 2015. Characteristic of selected air pollutants concentration in Warsaw (Poland). Scientific Review Engineering and Environmental Development 24(2): 193-206.

Rozbicka K., Rozbicki T., 2018. Variability of UTCI index in South Warsaw depending on atmospheric circulation. Theoretical and Applied Climatology 133(1/2): 511-520. DOI: https://doi.org/10.1007/s00704-017-2201-y

Russo S., Sillmann J., Fischer E.M., 2015. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters 10: 124003. DOI: https://doi.org/10.1088/1748-9326/10/12/124003

Schär C., Vidale P.L., Lüthi D., Frei C., Häberli C., Liniger M.A., Appenzeller C., 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427(6972): 332-336. DOI: https://doi.org/10.1038/nature02300

Sicard P., De Marco A., Agathokleous E., Feng Z., Xu X., Paoletti E., Diéguez J.J., Calatayud V., 2020. Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment 735: 139542. DOI: https://doi.org/10.1016/j.scitotenv.2020.139542

Sierosławski H., 1959. Results of air dustiness measurements in Lublin and in the area of selected Agricultural Experimental Stations of the University of Life Sciences in Lublin. Annales Universitatis Mariae Curie-Sklodowska section E (Agricultura) 14: 101-121.

Sikora S., 2008. The bioclimate of Wrocław. Scientific dissertations of the Institute of Geography and Regional Development of the University of Wrocław 5: 169.

Stępniewska Z., Goraj W., Sochaczewska A., Kuźniar A., Pytlak A., Malec M., 2014. Changes in atmospheric CH4, O3, NO2, SO2 concentration dynamics in Lublin in the years 2007-2009. Acta Agrophysica 21(3): 361-373.

Stępniewska Z., Szafranek A., 2002. Concentrations of nitrogen oxides (NOx) in the annual cycle a the control site in Lublin. Acta Agrophysica 78: 249-256.

Stępniewska Z., Szafranek A., 2003. Seasonal and daily distribution of nitrous oxide concentrations in the vicinity of a road in Lublin. Acta Agrophysica 84: 123-128.

Szymanowski M., 2004. Urban heat island in Wrocław. Geographical Studies 77: 229.

Theoharatos G., Pantavou K., Mavrakis A., 2010. Heat waves observed in 2007 in Athens, Greece: Synoptic conditions, bioclimatological assessment, air quality levels and health effects. Environmental Research 110: 152-161. DOI: https://doi.org/10.1016/j.envres.2009.12.002

Tomczyk A.M., 2021. Bioclimatic conditions of June 2019 in Poland on a multi-year background (1966-2019). Atmosphere 12: 1117. DOI: https://doi.org/10.3390/atmos12091117

Tomczyk A.M., Owczarek M., 2020. Occurrence of strong and very strong heat stress in Poland and its circulation conditions. Theoretical and Applied Climatology 139(3-4): 893-905. DOI: https://doi.org/10.1007/s00704-019-02998-3

Urban A., Kyselý J., 2014. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health 11: 952-967. DOI: https://doi.org/10.3390/ijerph110100952

USL [Urząd Statystyczny w Lublinie], 2023. Ludność (stan na 31 XII 2022). Online: lublin.stat.gov.pl/ (accessed 22.06.2023).

van den Elshout S., Léger K., Heich H., 2014. CAQI Common Air Quality Index-update with PM2.5 and sensitivity analysis. Science of the Total Environment 1: 488-489. DOI: https://doi.org/10.1016/j.scitotenv.2013.10.060

van den Elshout S., Léger K., Nussio F., 2008. Comparing urban air quality in Europe in real time: A review of existing air quality indices and the proposal of a common alternative. Environment International 34(5): 720-726. DOI: https://doi.org/10.1016/j.envint.2007.12.011

Vautard R., Beekmann M., Desplat J., 2007. Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. Comptes Rendus Geoscience 339: 747-763. DOI: https://doi.org/10.1016/j.crte.2007.08.003

Volná V., Blažek Z., Krejčí B., 2021. Assessment of air pollution by PM10 suspended particles in the urban agglomeration of Central Europe in the period from 2001 to 2018. Urban Climate 39: 100959. DOI: https://doi.org/10.1016/j.uclim.2021.100959

Wereski S., Dobek M., Wereski S., 2010. Frequency of occurrence of particular thermal perceptions in Lublin and in Lesko based on the Standardised Temperature Index (STI) in the years 1991-2005. In: Richling A. (ed.), Recreational landscapes – Shaping, use, transformation, Problems of landscape ecology 27, State Higher School of Pope John Paul II in Biała Podlaska, Polish Association of Landscape Ecology: 371-377.

Wereski S., Krzyżewska A., Dobek M., 2020. Winter UTCI variability in Poland in 21st century. Miscellanea Geographica 24(3): 1-10. DOI: https://doi.org/10.2478/mgrsd-2020-0021

WHO [World Health Organization], 2006. Air Quality Guidelines, Global Update. WHO Regional Office for Europe. Denmark. Online: https://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf (accessed 14 November 2022).

WHO [World Health Organization], 2013. Health effects of particulate matter: Policy implications for countries in Eastern Europe, Caucasus and Central Asia. WHO report 2013. WHO Regional Office for Europe, Denmark.

WHO [World Health Organization], 2021. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization, Geneva. Online: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf (accessed 14 November 2022).

Williams M.L., Atkinson R.W., Anderson H.R., Kelly F.J., 2014. Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide. Air Quality, Atmosphere and Health 7: 407-414. DOI: https://doi.org/10.1007/s11869-014-0249-8

Wine O., Osornio Vargas A., Campbell S.M., Hosseini V., Koch C.R., Shahbakhti M., 2022. Cold climate impact on air-pollution-related health outcomes: A scoping review. International Journal of Environmental Research and Public Health 19: 1473. DOI: https://doi.org/10.3390/ijerph19031473

Wyszkowski A., 1998. Problem of traffic pollution in Lublin. In: Nowosad M. (ed.), Problems of modern climatology and agrometeorology of the Lublin region, Publishing House of Maria Curie-Skłodowska University, Lublin: 141-149.

Zinkiewicz Z., 1969. Climatic and bioclimatic conditions in the Lublin Region – For economic purposes. Folia Societatis Scientiarum Lublinensis 9: 49-53.

Żelazny L., Rogulska A., Balcerek Z., Gleń G., Grzywaczewska T., Kowalczuk T., Lesicka R., Miazga J., Mirosław P., Nowosielska B., Orzeł I., Parcheta D., Roguska A., Sobocińska M., Śluz J., Tkaczyk J., Tychmanowicz U., 2016. Report on the state of the environment of the Lublin Voivodeship in the years 2013-2015. Environment Monitoring Library, Lublin.