Spatial analysis of ecological risk in a coastal dune landscape using high resolution aerial photography
PDF

Keywords

landscape ecological unit
landscape sub-class
landscape class
landscape pattern
landscape ecological risk
Parangtritis coastal dune

How to Cite

ListyaNiNgrum, N., Mardiatno, D., Pangaribowo, E. H., Setiawan, M. A., Sartohadi, J., & Sulistyo, B. (2024). Spatial analysis of ecological risk in a coastal dune landscape using high resolution aerial photography. Quaestiones Geographicae, 43(1), 5–19. https://doi.org/10.14746/quageo-2024-0001

Abstract

This study aims to investigate the dynamic pattern of landscape ecological units (LEUs) and analyse spatial variations of the ecological risk in Parangtritis coastal dune, Yogyakarta, Indonesia. A quantitative method was used in this research as part of landscape ecological analysis using a geographic information system. LEUs were interpreted by small format aerial photographs (SFAPs) and verified through field survey, then were calculated using the formula within grids to produce the ecological risk index (ERI) in the total area. According to the sub-class and class scenario, many LEUs showed changes in their landscape pattern. The ERI in the study area consisted of five levels (very low to very high), each of which was spatially varied. The ecological risk formed clusters coinciding with certain LEUs where fragility chiefly contributed to the sub-class scenario, while disturbance contributed to the class scenario.

https://doi.org/10.14746/quageo-2024-0001
PDF

Funding

This study is part of collaboration research at the Laboratory of Environmental Geomorphology and Disaster Mitigation, Faculty of Geography, Universitas Gadjah Mada. The authors would like to thank the faculty for supporting the adminis- tration and the Parangtritis Geomaritime Science Park (under the supervision of the Geospatial Information Agency, Indonesia) for providing the spatial data required in this study.

References

Bahrami Y., Hassani H., Maghsoudi A., 2021. Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJournal 86(4): 1797-1816. DOI: https://doi.org/10.1007/s10708-020-10162-y

Brenning A., 2005. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Sciences 5(6): 853-862. DOI: https://doi.org/10.5194/nhess-5-853-2005

Chen W., Li W., Chai H., Hou E., Li X., Ding X., 2016. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji city, China. Environmental Earth Sciences 75(1): 1-14. DOI: https://doi.org/10.1007/s12665-015-4795-7

Ciampalini A., Raspini F., Lagomarsino D., Catani F., Casagli N., 2016. Landslide susceptibility map refinement using PSInSAR data. Remote Sensing of Environment 184: 302-315. DOI: https://doi.org/10.1016/j.rse.2016.07.018

Devkota K.C., Regmi A.D., Pourghasemi H.R., Yoshida K., Pradhan B., Ryu I.C., Dhital M.R., Althuwaynee O.F., 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards 65(1): 135-165. DOI: https://doi.org/10.1007/s11069-012-0347-6

El Jazouli A., Barakat A., Khellouk R., 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters 6(1): 1-12. DOI: https://doi.org/10.1186/s40677-019-0119-7

Fell R., Corominas J., Bonnard C., Cascini L., Leroi E., Savage W.Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology 102(3-4): 99-111. DOI: https://doi.org/10.1016/j.enggeo.2008.03.014

Guo Z., Shi Y., Huang F., Fan X., Huang J., 2021. Landslide susceptibility zonation method based on C5. 0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers 12(6): 101249. DOI: https://doi.org/10.1016/j.gsf.2021.101249

Kamran K.V., Feizizadeh B., Khorrami B., Ebadi Y., 2021. A comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping. Applied Geomatics 13(4): 837-851. DOI: https://doi.org/10.1007/s12518-021-00393-0

Kavzoglu T., Sahin E.K., Colkesen I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3): 425-439. DOI: https://doi.org/10.1007/s10346-013-0391-7

Kim S.W., Chun K.W., Kim M., Catani F., Choi B., Seo J.I., 2021. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides 18(2): 569-582. DOI: https://doi.org/10.1007/s10346-020-01505-4

Leir M., Ramsay S., Mitchell A., 2004. Regional landslide hazard susceptibility mapping for pipelines in British Columbia. In: 57th Canadian Geotechnical Conference and the 5th Joint CGS-IAH Conference, Old Quebec, 24-27 October 2004: 1-9.

Li M., Zhang L., Dong J., Tang M., Shi X., Liao M., Xu Q., 2019. Characterization of pre-and post-failure displacements of the Huangnibazi landslide in Li County with multi-source satellite observations. Engineering Geology 257: 105140. DOI: https://doi.org/10.1016/j.enggeo.2019.05.017

Majeed M., Lu L., Haq S.M., Waheed M., Sahito H.A., Fatima S., Aziz R., Bussmann R.W., Tariq A., Ullah I., Aslam M., 2022. Spatiotemporal distribution patterns of climbers along an abiotic gradient in Jhelum district, Punjab, Pakistan. Forests 13(8): 1244. DOI: https://doi.org/10.3390/f13081244

Moragues S., Lenzano M.G., Lanfri M., Moreiras S., Lannutti E., Lenzano L., 2021. Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina. Natural Hazards 105(1): 915-941. DOI: https://doi.org/10.1007/s11069-020-04343-8

Panchal S., Shrivastava A.K., 2022. Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India. Ain Shams Engineering Journal 13(3): 101626. DOI: https://doi.org/10.1016/j.asej.2021.10.021

Pourghasemi H.R., Moradi H.R., Fatemi Aghda S.M., 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards 69(1): 749-779. DOI: https://doi.org/10.1007/s11069-013-0728-5

Ramesh V., Anbazhagan S., 2015. Landslide susceptibility mapping along Kolli Hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environmental Earth Sciences 73(12): 8009-8021. DOI: https://doi.org/10.1007/s12665-014-3954-6

Saaty T.L. 1980 The Analytic Hierarchy Process (New York: McGraw Hill. International, Translated to Russian, Portuguese, and Chinese, Revised editions, Paperback.

Saaty T.L. 1990 An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process. Management Science 36(3): 259-268. DOI: https://doi.org/10.1287/mnsc.36.3.259

Shahabi H., Hashim M., 2015. Landslide susceptibility mapping using GIS-based statistical models and remote sensing data in tropical environment. Scientific Reports 5(1): 1-15. DOI: https://doi.org/10.1038/srep09899

Shano L., Raghuvanshi T.K., Meten M., 2020. Landslide susceptibility evaluation and hazard zonation techniques-a review. Geoenvironmental Disasters 7(1): 1-19. DOI: https://doi.org/10.1186/s40677-020-00152-0

Singh K., Kumar V., 2018. Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in bosom of Himalaya. Journal of Mountain Science 15(4): 808-824. DOI: https://doi.org/10.1007/s11629-017-4634-2

Sonker I., Tripathi J.N., Singh A.K., 2021. Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quaternary Science Advances 4: 100039. DOI: https://doi.org/10.1016/j.qsa.2021.100039

Tariq A., Mumtaz F., 2022. Modeling spatio-temporal assessment of land use land cover of lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environmental Science and Pollution Research 30: 23908-23924. DOI: https://doi.org/10.1007/s11356-022-23928-3

Tariq A., Mumtaz F., Majeed M., Zeng X., 2023. Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment 195(1): 114. DOI: https://doi.org/10.1007/s10661-022-10738-w

Tariq A., Yan J., Mumtaz F., 2022. Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth 128: 103286. DOI: https://doi.org/10.1016/j.pce.2022.103286

Ullah K., Zhang J., 2020. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS One 15(3): e0229153. DOI: https://doi.org/10.1371/journal.pone.0229153

Xu C., Dai F., Xu X., Lee Y.H., 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145: 70-80. DOI: https://doi.org/10.1016/j.geomorph.2011.12.040

Zhang Y.X., Lan H.X., Li L.P., Wu Y.M., Chen J.H., Tian N.M., 2020. Optimizing the frequency ratio method for landslide susceptibility assessment: A case study of the Caiyuan Basin in the southeast mountainous area of China. Journal of Mountain Science 17(2): 340-357. DOI: https://doi.org/10.1007/s11629-019-5702-6

Zhao X., Chen W., 2019. GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques. Applied Sciences 10(1): 16. DOI: https://doi.org/10.3390/app10010016

Zhao Z., Liu Z.Y., Xu C., 2021. Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models. Frontiers in Earth Science 9: 589630. DOI: https://doi.org/10.3389/feart.2021.589630