Abstract
Sedimentation determines how optimal a reservoir functions throughout its design life. The Sempor Reservoir in Central Java, Indonesia, will be 45 years old in 2023. At least 15 million m3 of particles have been sedimented in the reservoir for >30 years, reducing its function as an irrigation water source to only 60%. Therefore, assessing its performance in providing irrigation water and generating hydropower electricity is essential, given that its design life ends in 2028. This study was conducted to analyse the sedimentation and estimate the useful life of the Sempor Reservoir based on the erosion potential in its catchment area. The potential sedimentation rate was formulated from erosion potential assessed using the universal soil loss equation (USLE) model, sediment delivery ratio (SDR) and trap efficiency (TE). By contrast, the actual sedimentation rate was determined from changes in the dead storage capacity from 2013 to 2023. The interpolation performance evaluation of the bathymetric survey results was tested using the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and mean absolute percentage error (MAPE) which resulted in values of 0.917; 0.87; and 13.03%, respectively. The results show that the catchment area had an erosion potential of 3,405,353.86 t∙a−1, resulting in a potential sedimentation rate of 309,106.63 m3∙a−1. The calculated actual sedimentation rate was 33,903.28 m3∙a−1. Therefore, the useful life of the Sempor Reservoir was estimated to end in 0.5 years and 4.59 years based on the potential and actual sedimentation rates, respectively.
Funding
The research was funded by the RTA Program Universitas Gadjah Mada with the Grant Number 5075/UN1.P.II/Dit-Lit/PT.01.01/2023 and Prof. Dr. Slamet Suprayogi, M.S. as the principal investigator.
References
Ahmad N.S.B.N., Mustafa F.B., Yusoff S.Y.M., Didams G., 2020. A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research 8: 103-115. DOI: https://doi.org/10.1016/j.iswcr.2020.04.001
Aldrian E., Susanto R.D., 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology 23(12): 1435-1452. DOI: https://doi.org/10.1002/joc.950
Ali M.H., Abustan I., 2014. A new novel index for evaluating model performance. Journal of Natural Resources and Development 4: 1-9. DOI: https://doi.org/10.5027/jnrd.v4i0.01
Arsyad S., 2010. Konservasi Tanah dan Air. IPB Press, Bogor.
Asdak C., 2020. Hidrologi dan Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta.
Chang K.T., 2007. Introduction to geographic information system. 4th edn, McGraw-Hill, New York.
Christanto N., Setiawan M.A., Nurkholis A., Istiqomah S., Sartohadi J., Hadi M.P., 2018. Sedimentation rate analysis at the upper Serayu watershed using the SWAT model. Majalah Geografi Indonesia 32(1): 50-58. DOI: https://doi.org/10.22146/mgi.32280
Dargahi B., 2012. Reservoir sedimentation. In: Bengtsson, L., Herschy, R.W., Fairbridge, R.W. (eds), Encyclopedia of lakes and reservoir. Springer, Amsterdam.
Dariah A., Subagyo Tafakresnanto C., Marwanto S., 2004. Kepekaan Tanah terhadap Erosi. Centre for Soil and Agro-Climate Research and Development, Bogor
DeLuca T.H., Zackrisson O., Bergman I., Díez B., Bergman B., 2013. Diazotrophy in alluvial meadows of subarctic river systems. PLOS ONE 8(11): 1-10. DOI: https://doi.org/10.1371/journal.pone.0077342
El-Swaify S., Dangler E.W., Armstrong C.L., 1982. Soil erosion by water in the tropics. College of Tropical Agriculture and Human Resource, University of Hawaii, Honolulu.
Fitryady D., 2008. Sebaran Jenis Tanah Berdasarkan Jenis Formasi Geologi di Daerah Aliran Sungai (DAS) Waduk Sempor Kabupaten Kebumen. Master Thesis. Universitas Gadjah Mada. Yogyakarta.
Gerrard A.J., 1981. Soils and landform. George Allen and Unwin, London.
Gill M.A., 1979. Sedimentation and useful life of reservoirs. Journal of Hydrology 44(1-2): 89-95. DOI: https://doi.org/10.1016/0022-1694(79)90148-3
Goovaerts P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228(3): 113-129. DOI: https://doi.org/10.1016/S0022-1694(00)00144-X
Haregewyn N., Melesse B., Tsunekawa A., Tsubo M., Meshesha D., Balana B.B., 2012. Reservoir sedimentation and its mitigating strategies: A case study of Angereb reservoir (NW Ethiopia). Journal of Soils Sediments 12(1): 291-305. DOI: https://doi.org/10.1007/s11368-011-0447-z
Hidayah E., Widiarti W.Y., Ammarulsyah A.R., 2022. Flood vulnerability zoning with geographic information system in Kaliputih sub-watershed, Jember District. Jurnal Teknik Pengairan 13(2): 273-282. DOI: https://doi.org/10.21776/ub.pengairan.2022.013.02.12
Idjudin A.A., 2011. The role of land conservation roles in plantation management. Jurnal Sumberdaya Lahan 5(2): 103-116.
Indonesia Ministry of Forestry, (2009). Peraturan Menteri Kehutanan Republik Indonesia Nomor P. 32/Menhut-Ii/2009 Tentang Tata Cara Penyusunan Rencana Teknik Rehabilitasi Hutan dan Lahan Daerah Aliran Sungai (Rtkrhl-DAS) (Ministerial Regulation No. P.32/menhut-ii/2009 on Procedures for Preparing Engineering Plans for Forest and Land Rehabilitation in Watersheds). Jakarta.
Indonesia Ministry of Forestry, 2011. Ministerial Regulation No. P.7/DAS-V/2011 on Technical Guidelines for the Standard Operating Procedure (SOP) System for Flood and Landslide Mitigation. Jakarta.
Indonesia Ministry of Public Works and Settlement, 2017. Modul Operasi Waduk. Centre for Education and Training of Water Resources and Construction, Bandung.
Jiang Q., Zhou P., Liao C., Liu Y., Liu F., 2020. Spatial pattern of soil erodibility factor (K) as affected by ecological restoration in a typical degraded watershed of Central China. Science of the Total Environment 749: 1-12. DOI: https://doi.org/10.1016/j.scitotenv.2020.141609
Julia H., 2017. The significance of check dam construction scenarios in slowing sedimentation rates in the Sempor reservoir. Agrium 21(1): 78-88. DOI: https://doi.org/10.30596/agrium.v21i1.1490
Kebumen Agriculture and Food Service Office, 2021. Agriculture statistics book 2020. Agriculture and Food Service Office, Kebumen.
Keshavarzi A., Kumar V., Bottega E.L., Rodrigo-Comino Jesús., 2019. Determining land management zones using pedo-geomorphological factors in potential degraded regions to achieve land degradation neutrality. Land 8(6): 1-14. DOI: https://doi.org/10.3390/land8060092
Kinnell P.I.A., 2016. Comparison between the USLE, the USLE-M, and replicate plots to model rainfall erosion on bare fallow areas. Catena 145: 39-46. DOI: https://doi.org/10.1016/j.catena.2016.05.017
Kuok K.K.K., Mah D.Y.S., Chiu P.C., 2013. Evaluation of C and P factors in universal soil loss equation on trapping sediment: Case study of Santubong river. Journal of Water Resource and Protection 5(12): 1149-1154. DOI: https://doi.org/10.4236/jwarp.2013.512121
Li Z.W., 2014. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 124: 9-17. DOI: https://doi.org/10.1016/j.catena.2014.08.019
Lihawa F., 2017. Daerah Aliran Sungai Alo: Erosi, Sedimentasi, dan Longsoran. Deepublish, Yogyakarta.
Main Station of Serayu-Opak Watershed, 2020. Tingkatkan Nilai Fungsi Waduk Sempor, BBWS Serayu Opak Akan Lakukan Pengerukan Sedimen. https://sda.pu.go.id/balai/bbwsserayuopak/tingkatkan-nilai-fungsi-waduk-sempor-bbws-serayu-opak-akan-lakukan-pengerukan-sedimen/. Retrieved by Satrio Budiman on 16 August 2022.
Marhaendi T., 2013. Sedimentation management strategies for reservoirs. Jurnal Techno 14(2): 29-41.
Meinen B.U., Robinson D.T., 2021. Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data. Environmental Modelling and Software 137: 1-10. DOI: https://doi.org/10.1016/j.envsoft.2021.104962
Meng Q., Liu Z., Borders B.E., 2013. Assessment of regression kriging for spatial interpolation – comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science 40(1): 28-39. DOI: https://doi.org/10.1080/15230406.2013.762138
Moriasi D.N., Arnold J.G., Liew M.W., Van Bingner R.L., Harmel R.D., Veith T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50(3): 885-900. DOI: https://doi.org/10.13031/2013.23153
Motovilov Y.G., Gottschalk L., Engeland K., Rodhe A., 1999. Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology 98: 257-277. DOI: https://doi.org/10.1016/S0168-1923(99)00102-1
Mulyono A., Rusydi A.F., Lestiana H., 2019. Soil permeability of various land use types in coastal alluvial soils in Cimanuk watershed, Indramayu. Jurnal Ilmu Lingkungan 17(1): 1-6. DOI: https://doi.org/10.14710/jil.17.1.1-6
Mutaqin B.W., Lavigne F., Sudrajat Y., Handayani L., Lahitte P., Virmoux C., Hiden, Hadmoko D.S., Komorowski J.C., Hananto N.D., Wassmer P., Hartono, Boillot-Airaksinen K., 2019. Landscape evolution on the Eastern Part of Lombok (Indonesia) related to the 1257 CE eruption of the Samalas Volcano. Geomorphology 327: 338-350. DOI: https://doi.org/10.1016/j.geomorph.2018.11.010
Nagle G., Covich A., Fahey T.J., Lassoie J.P., 1999. Management of sedimentation in tropical watersheds. Environmental Management 23(4): 441-452. DOI: https://doi.org/10.1007/s002679900199
Nugraha A.R., Saputro S., Purwanto., 2013. Bathymetry mapping and tidal analysis to determine floor elevation of Pier 136 at the Mahakam River Estuary, Sanga-Sanga, East Kalimantan. Jurnal Oseanografi 2(3): 238-244.
O’Geen A.T., 2006. Erodibility of agricultural soils, with examples in lake and mendocino counties. Division of Agriculture and Natural Resources University of California, California. DOI: https://doi.org/10.3733/ucanr.8194
Olii M.R., Kironoto B.A., Yulistiyanto B., Sunjoto, 2018. Estimating spatially distributed sediment yield using GIS-RUSLE-SEDD model in Catchment of Reservoir in Java. Proceedings of International Association for Hydro-Environment Engineering and Research (IAHR)-Asia Pacific Division (APD) Congress: Multi-Perspective Water for Sustainable Development. IAHR-APD, Yogyakarta.
Oliveira P.T.S., Wendland E., Nearing M.A., 2012. Rainfall erosivity in Brazil: A review. Catena 100: 139-147. DOI: https://doi.org/10.1016/j.catena.2012.08.006
Park S.J., Burt T.P., 2002. Identification and Characterization of Pedogeomorphological Processes on a Hillslope. Soil Science Society of America Journal 66(6): 1897-1910. DOI: https://doi.org/10.2136/sssaj2002.1897
Patil R.J., 2018. Spatial techniques for soil erosion estimation. In: Spatial Techniques for Soil Erosion Estimation, SpringerBriefs in GIS. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-74286-1
Putra D.S., Siwu W.P., Wulandari D.A., 2019. Effects of sedimentation on the function of Karian reservoir. Jurnal Teknisia 24(2): 108-116.
Putri M.D., Baskoro D.P.P., Tarigan S.D., Wahjunie E.D., 2017. Characteristics of several soil properties at various slope positions and land uses in upper Ciliwung watershed. Jurnal Ilmu Tanah dan Lingkungan 19(2): 81-85. DOI: https://doi.org/10.29244/jitl.19.2.81-85
Qu L., Zhu X., Liang Y., Qiu D., Zhang Q., Liang Y., 2023. Spatial variation of soil properties and evaluation of the risk of soil erodibility on a river alluvial and marine sedimentary plain in Eastern China. Journal of Soils and Sediments 23: 2106-2119. DOI: https://doi.org/10.1007/s11368-023-03460-8
Rachma H.A., 2019. Estimasi Umur Layanan Waduk Sempor sebagai Suplai Irigasi. Undergraduate Thesis. Universitas Gadjah Mada. Yogyakarta.
Reddy M.G.R., Reddy G.P.O., Maji A.K., Nageshwara Rao K., 2003. Landscape analysis for pedo-geomorphological characterization in part of Basaltic Terrain, Central India using remote sensing and GIS. Journal of The Indian Society of Remote Sensing 31(4) 271-282. DOI: https://doi.org/10.1007/BF03007347
Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water a guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Department of Agriculture, Washington D. C.
Satriagasa M.C., Suryatmojo H., 2020. Effectiveness of elephant grass cover (Pennisetum purpureum) in mitigating soil erosion by rainwater. agriTECH 40(2): 141-149. DOI: https://doi.org/10.22146/agritech.50290
Schleiss A.J., Franca M.J., Juez C., De Cesare G., 2016. Reservoir sedimentation. Journal of Hydraulic Research 54(6): 595-614. DOI: https://doi.org/10.1080/00221686.2016.1225320
Sirjani E., Sameni A., Moosavi A.A., Mahmoodabadi M., Laurent B., 2019. Portable wind tunnel experiments to study soil erosion by wind and its link to soil properties in the Fars Province, Iran. Geoderma 333: 69-80. DOI: https://doi.org/10.1016/j.geoderma.2018.07.012
Sisinggih D., Wahyuni S., Hidayat F., 2021. Sedimentasi Waduk. Universitas Brawijaya Press, Malang.
Subramanya K., 2008. Engineering hydrology. Tata McGraw-Hill Publishing Company Limited, New Delhi.
Sumiahadi A., Acar R., 2019. Soil Erosion in Indonesia and Its Control. Proceeding book of international symposium for environmental science and engineering research (ISESER).Necmettin Erbakan University, Konya.
Suprayogi S., Purnama Ig.L.S., Darmanto D., 2013. Pengelolaan Daerah Aliran Sungai. Gadjah Mada University Press, Yogyakarta.
Susilo E., 2001. Kajian Efisiensi Tangkapan Sedimen pada Beberapa Waduk di Jawa. Master Thesis. Diponegoro University. Semarang.
Sutrisno J., Sanim B., Saefuddin A., Sitorus S.R.P., 2011. Erosion and sedimentation predictions for Keduang sub-watershed, Wonogiri District. Media Konservasi 16(2): 78-86.
Tian Y., Xu Y.P., Yang Z., Wang G., Zhu Q., 2018. Integration of A Parsimonious Hydrological Model with Recurrent Neural Networks for Improved Streamflow Forecasting. Water 10(11): 1-17. DOI: https://doi.org/10.3390/w10111655
U.S. Department of The Interior, 2006. Erosion and sedimentation manual (Issue November). Bureau of Reclamation, U.S. Department of The Interior, Washington D. C.
United Nations Statistic Division, 2017. Manual on the basic set of environmental statistics of the FDES 2013: Water resources statistic. United Nations, New York.
Van Bemmelen R.W., 1949. The geology of Indonesia: General geology of Indonesia and adjacent archipelagoes. Government Printing Office, The Hague, Jakarta.
Wantzen K.M., Mol J.H., 2013. Soil erosion from agriculture and mining: A threat to tropical stream ecosystems. Agriculture 3: 660-683. DOI: https://doi.org/10.3390/agriculture3040660
Wheeler M.C., Mcbride J., Lau W.K.M., 2005. Intraseasonal variability in the atmosphere-ocean climate system: Australian-Indonesian monsoon. Springer Berlin Heidelberg, Berlin.
Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses: A guide to conservation planning. U.S. Department of Agriculture, Washington D. C.
Xiong M., Sun R., Chen L., 2019. A global comparison of soil erosion associated with land use and climate type. Geoderma 343: 31-39. DOI: https://doi.org/10.1016/j.geoderma.2019.02.013
Yang X., Gray J., Chapman G., Zhu Q., Tulau M., McInnes-Clarke S., 2018. Digital mapping of soil erodibility for water erosion in New South Wales, Australia. Soil Research 56(2): 158-170. DOI: https://doi.org/10.1071/SR17058
Zehetner F., Miller W.P., 2006. Erodibility and runoff-infiltration characteristics of volcanic ash soils along an altitudinal climosequence in the Ecuadorian Andes. Catena 65(3): 201-213. DOI: https://doi.org/10.1016/j.catena.2005.10.003
Zhang Z., Yu R., 2023. Assessment of soil erosion from an ungauged small watershed and its effect on Lake Ulansuhai, China. Land 12(2): 1-15. DOI: https://doi.org/10.3390/land12020440
Zhu Y., Li W., Wang D., Wu Z., Shang P., 2022. Spatial pattern of soil erosion in relation to land use change in a rolling hilly region of Northeast China. Land 11(8): 11-17. DOI: https://doi.org/10.3390/land11081253
License
Copyright (c) 2024 Satrio Budiman, Slamet Suprayogi
This work is licensed under a Creative Commons Attribution 4.0 International License.